tion in one generation will produce the same number in the next. It is extremely difficult to detect the precise form of such curves in nature, however; variability is high, typically data are only available for parts of any one curve, and the treatment really only applies to situations where there are no lags. It is possible to deduce various forms of reproduction curves, however, by disaggregating the contributions of fecundity and mortality. The three lower graphs in Figure 3b, 3d, and 3f represent this disaggregation of their counterpart reproduction curves. The simplest types of reproduction curve (Figure 3a) can arise from a mortality that regularly increases with density and either a constant fecundity or a declining one. With fecundity expressed as the percentage mortality necessary to just balance reproduction, the cross-over point of the curves represents the equilibrium condition. But we know that the effects of density on fecundity and mortality can be very much more complicated.

Mortality from predation, for example, has been shown to take a number of classic forms (Holling 11, 13). The individual attack by predators as a function of prey density (the functional response to prey density) can increase with a linear rise to a plateau (type 1), a concave or negatively accelerated rise to a plateau (type 2), or an S-shaped rise to a plateau (type 3). The resulting contribution to mortality from these responses can therefore show ranges of prey density in which there is direct density dependence (negative feedback from the positively accelerated portions of the type 3 response), density independence (the straight line rise of type 1), and inverse dependence (the positive feedback from the negatively accelerated and plateau portions of the curves). There are, in addition, various numerical responses generated by changes in the number of predators as the density of their prey increases. Even for those predators whose populations respond by increasing, there often will be a limit to the increase set by other conditions in the environment. When populations are increasing they tend to augment the negative feedback features (although with a delay), but when populations are constant, despite increasing prey density, the percent mortality will inevitably decline since individual attack eventually saturates at complete satiation (the plateaux of all three functional responses). In Figures 3d and 3f the mortality curves shown summarize a common type. The rising or direct density-dependent limb of the curve is induced by increasing predator populations and by the reduced intensity of attack at low densities, shown by the initial positively accelerated portion of the S-shaped type 3 response. Such a condition is common for predators with alternate prey, both vertebrates (Holling 14) and at least some invertebrates (Steele 38). The declining inverse densitydependent limb is induced by satiation of the predator and a numerical response that has been reduced or stopped.

Fecundity curves that decline regularly over a very wide range of increasing population densities (as in Figure 3d) are common and have been referred to as *Drosophila*-type curves (Fujita 6). This decline in fecundity is caused by increased competition for oviposition sites, interference with mating, and increased sterility. The interaction between a dome-shaped mortality curve and a monotonically decreasing fecundity curve can generate equilibrium conditions (Figure 3d). Two stable equilibria are possible, but between these two is a transient equilibrium designated as the escape threshold (ES in Figure 3). Effects of random changes on

populations or parameters could readily shift densities from around the lower equilibrium to above this escape threshold, and in these circumstances populations would inevitably increase to the higher equilibrium.

The fecundity curves are likely to be more complex, however, since it seems inevitable that at some very low densities fecundity will decline because of difficulties in finding mates and the reduced effect of a variety of social facilitation behaviors. We might even logically conclude that for many species there is a minimum density below which fecundity is zero. A fecundity curve of this Allee-type (Fujita 6) has been empirically demonstrated for a number of insects (Watt 42) and is shown in Figure 3f. Its interaction with the dome-shaped mortality curve can add another transient equilibrium, the extinction threshold (EX in Figure 3f). With this addition there is a lower density such that if populations slip below it they will proceed inexorably to extinction. The extinction threshold is particularly likely since it has been shown mathematically that each of the three functional response curves will intersect with the ordinate of percent predation at a value above zero (Holling 13).

Empirical evidence, therefore, suggests that realistic forms to fecundity and mortality curves will generate sinuous reproduction curves like those in Figures 3c and 3e with the possibility of a number of equilibrium states, some transient and some stable. These are precisely the conditions that will generate domains of attraction, with each domain separated from others by the extinction and escape thresholds. This analysis of process hence adds support to the field observations discussed earlier.

The behavior of systems in phase space cannot be completely understood by the graphical representations presented above. These graphs are appropriate only when effects are immediate; in the face of the lags that generate cyclic behavior the reproduction curve should really produce two values for the population in generation t+1 for each value of the population in generation t. The graphical treatment of Rosenzweig & MacArthur (33) to a degree can accommodate these lags and cyclic behavior. In their treatment they divide phase planes of the kind shown in Figure 2 into various regions of increasing and decreasing x and y populations. The regions are separated by two lines, one representing the collection of points at which the prey population does not change in density (dx/dt = 0, the prey isocline) and one in which the predator population does not so change (dy/dt = 0), the predator isocline). They deduce that the prey isocline will be dome-shaped for much the same reason as described for the fecundity curves of Figure 3f. The predator isocline, in the simplest condition, is presumed to be vertical, assuming that only one fixed level of prey is necessary to just maintain the predator population at a zero instantaneous rate of change.

Intersection of the two isoclines indicates a point where both populations are at equilibrium. Using traditional linear stability analysis one can infer whether these equilibrium states are stable (Figure 2c) or not (Figure 2a). Considerable importance is attached to whether the predator isocline intersects the rising or falling portion of the prey isocline. As mentioned earlier these techniques are only appropriate near equilibrium (May 24), and the presumed unstable conditions in fact generate stable limit cycles (Figure 2e). Moreover, it is unlikely that the predator isocline is a

vertical one in the real world, since competition between predators at high predator densities would so interfere with the attack process that a larger number of prey would be required for stable predator populations. It is precisely this condition that was demonstrated by Griffiths & Holling (9) when they showed that a large number of species of parasites distribute their attacks contagiously. The result is a "squabbling predator behavior" (Rosenzweig 34, 35) that decreases the efficiency of predation at high predator/prey ratios. This converts an unstable system (Figure 2a) to a stable one (Figure 2c); it is likely that stability is the rule, rather than the exception, irrespective of where the two isoclines cross.

The empirical evidence described above shows that realistic fecundity and mortality (particularly predation) processes will generate forms that the theorists might tend to identify as special subsets of more general conditions. But it is just these special subsets that separate the real world from all possible ones, and these more realistic forms will modify the general conclusions of simpler theory. The ascending limb of the Allee-type fecundity curve will establish, through interaction with mortality, a minimum density below which prey will become extinct. This can at the same time establish an upper prey density above which prey will become extinct because the amplitude of prey fluctuations will eventually carry the population over the extinction threshold, as shown in the outer trajectory of Figure 2d. These conditions alone are sufficient to establish a domain of attraction, although the boundaries of this domain need not be closed. Within the domain the contagious attack by predators can produce a stable equilibrium or a stable node. Other behaviors of the mortality agents, however, could result in stable limit cycles.

More realistic forms of functional response change this pattern in degree only. For example, a negatively accelerated type of functional response would tend to make the domain of attraction somewhat smaller, and an S-shaped one larger. Limitations in the predator's numerical response and thresholds for reproduction of predators, similar to those for prey, could further change the form of the domain. Moreover, the behaviors that produce the sinuous reproduction curves of Figures 3c and 3e can add additional domains. The essential point, however, is that these systems are not globally stable but can have distinct domains of attraction. So long as the populations remain within one domain they have a consistent and regular form of behavior. If populations pass a boundary to the domain by chance or through intervention of man, then the behavior suddenly changes in much the way suggested from the field examples discussed earlier.

The Random World

To this point, I have argued as if the world were completely deterministic. In fact, the behavior of ecological systems is profoundly affected by random events. It is important, therefore, to add another level of realism at this point to determine how the above arguments may be modified. Again, it is applied ecology that tends to supply the best information from field studies since it is only in such situations that data have been collected in a sufficiently intensive and extensive manner. As one example, for 28 years there has been a major and intensive study of the spruce budworm and its interaction with the spruce-fir forests of eastern Canada (Morris

has Joes has for

27). There have been six outbreaks of the spruce budworm since the early 1700s (Baskerville 1) and between these outbreaks the budworm has been an exceedingly rare species. When the outbreaks occur there is major destruction of balsam fir in all the mature forests, leaving only the less susceptible spruce, the nonsusceptible white birch, and a dense regeneration of fir and spruce. The more immature stands suffer less damage and more fir survives. Between outbreaks the young balsam grow, together with spruce and birch, to form dense stands in which the spruce and birch, in particular, suffer from crowding. This process evolves to produce stands of mature and overmature trees with fir a predominant feature.

This is a necessary, but not sufficient, condition for the appearance of an outbreak; outbreaks occur only when there is also a sequence of unusually dry years (Wellington 43). Until this sequence occurs, it is argued (Morris 27) that various natural enemies with limited numerical responses maintain the budworm populations around a low equilibrium. If a sequence of dry years occurs when there are mature stand of fir, the budworm populations rapidly increase and escape the control by predators and parasites. Their continued increase eventually causes enough tree mortality to force a collapse of the populations and the reinstatement of control around the lower equilibrium. The reproduction curves therefore would be similar to those in Figures 3c or 3e.

In brief, between outbreaks the fir tends to be favored in its competition with spruce and birch, whereas during an outbreak spruce and birch are favored because they are less susceptible to budworm attack. This interplay with the budworm thus maintains the spruce and birch which otherwise would be excluded through competition. The fir persists because of its regenerative powers and the interplay of forest growth rates and climatic conditions that determine the timing of budworm outbreaks.

This behavior could be viewed as a stable limit cycle with large amplitude, but it can be more accurately represented by a distinct domain of attraction determined by the interaction between budworm and its associated natural enemies, which is periodically exceeded through the chance consequence of climatic conditions. If we view the budworm only in relation to its associated predators and parasites we might argue that it is highly unstable in the sense that populations fluctuate widely. But these very fluctuations are essential features that maintain persistence of the budworm, together with its natural enemies and its host and associated trees. By so fluctuating, successive generations of forests are replaced, assuring a continued food supply for future generations of budworm and the persistence of the system.

Until now I have avoided formal identification of different kinds of behavior of ecological systems. The more realistic situations like budworm, however, make it necessary to begin to give more formal definition to their behavior. It is useful to distinguish two kinds of behavior. One can be termed stability, which represents the ability of a system to return to an equilibrium state after a temporary disturbance; the more rapidly it returns and the less it fluctuates, the more stable it would be. But there is another property, termed resilience, that is a measure of the persistence of systems and of their ability to absorb change and disturbance and still maintain the same relationships between populations or state variables. In this sense, the

Definition of Stability

Pefinition of lieure budworm forest community is highly unstable and it is because of this instability that it has an enormous resilience. I return to this view frequently throughout the remainder of this paper.

The influence of random events on systems with domains of attraction is found in aquatic systems as well. For example, pink salmon populations can become stabilized for several years at very different levels, the new levels being reached by sudden steps rather than by gradual transition (Neave 28). The explanation is very much the same as that proposed for the budworm, involving an interrelation between negative and positive feedback mortality of the kinds described in Figures 3d and 3f, and random effects unrelated to density. The same pattern has been described by Larkin (18) in his simulation model of the Adams River sockeye salmon. This particular run of salmon has been characterized by a regular four-year periodicity since 1922, with one large or dominant year, one small or subdominant, and two years with very small populations. The same explanation as described above has been proposed with the added reality of a lag. Essentially, during the dominant year limited numerical responses produce an inverse density-dependent response as in the descending limb of the mortality curves of Figure 3d and 3f. The abundance of the prey in that year is nevertheless sufficient to establish populations of predators that have a major impact on the three succeeding low years. Buffering of predation by the smolts of the dominant year accounts for the larger size of the subdominant. These effects have been simulated (Larkin 18), and when random influences are imposed in order to simulate climatic variations the system has a distinct probability of flipping into another stable configuration that is actually reproduced in nature by sockeye salmon runs in other rivers. When subdominant escapement reaches a critical level there is about an equal chance that it may become the same size as the dominant one or shrivel to a very small size.

Random events, of course, are not exclusively climatic. The impact of fires on terrestrial ecosystems is particularly illuminating (Cooper 3) and the periodic appearance of fires has played a decisive role in the persistence of grasslands as well as certain forest communities. As an example, the random perturbation caused by fires in Wisconsin forests (Loucks 21) has resulted in a sequence of transient changes that move forest communities from one domain of attraction to another. The apparent instability of this forest community is best viewed not as an unstable condition alone, but as one that produces a highly resilient system capable of repeating itself and persisting over time until a disturbance restarts the sequence.

In summary, these examples of the influence of random events upon natural systems further confirm the existence of domains of attraction. Most importantly they suggest that instability, in the sense of large fluctuations, may introduce a resilience and a capacity to persist. It points out the very different view of the world that can be obtained if we concentrate on the boundaries to the domain of attraction rather than on equilibrium states. Although the equilibrium-centered view is analytically more tractable, it does not always provide a realistic understanding of the systems' behavior. Moreover, if this perspective is used as the exclusive guide to the management activities of man, exactly the reverse behavior and result can be produced than is expected.

fire ecology

The Spatial Mosaic

To this point, I have proceeded in a series of steps to gradually add more and more reality. I started with self-contained closed systems, proceeded to a more detailed explanation of how ecological processes operate, and then considered the influence of random events, which introduced heterogeneity over time.

The final step is now to recognize that the natural world is not very homogeneous

over space, as well, but consists of a mosaic of spatial elements with distinct biological, physical, and chemical characteristics that are linked by mechanisms of biological and physical transport. The role of spatial heterogeneity has not been well explored in ecology because of the enormous logistic difficulties. Its importance, however, was revealed in a classic experiment that involved the interaction between a predatory mite, its phytophagous mite prey, and the prey's food source (Huffaker et al 15). Briefly, in the relatively small enclosures used, when there was unimpeded movement throughout the experimental universe, the system was unstable and oscillations increased in amplitude. When barriers were introduced to impede dispersal between parts of the universe, however, the interaction persisted. Thus populations in one small locale that suffer chance extinctions could be reestablished by invasion from other populations having high numbers—a conclusion that is confirmed by Roff's mathematical analysis of spatial heterogeneity (32).

There is one study that has been largely neglected that is, in a sense, a much more realistic example of the effects of both temporal and spatial heterogeneity of a population in nature (Wellington 44, 45). There is a peninsula on Vancouver Island in which the topography and climate combine to make a mosaic of favorable locales for the tent caterpillar. From year to year the size of these locales enlarges or contracts depending on climate; Wellington was able to use the easily observed changes in cloud patterns in any year to define these areas. The tent caterpillar, to add a further element of realism, has identifiable behavioral types that are determined not by genetics but by the nutritional history of the parents. These types represent a range from sluggish to very active, and the proportion of types affects the shape of the easily visible web the tent caterpillars spin. By combining these defined differences of behavior with observations on changing numbers, shape of webs, and changing cloud patterns, an elegant story of systems behavior emerges. In a favorable year locales that previously could not support tent caterpillars now can, and populations are established through invasion by the vigorous dispersers from other locales. In these new areas they tend to produce another generation with a high proportion of vigorous behavioral types. Because of their high dispersal behavior and the small area of the locale in relation to its periphery, they then tend to leave in greater numbers than they arrive. The result is a gradual increase in the proportion of more sluggish types to the point where the local population collapses. But, although its fluctuations are considerable, even under the most unfavorable conditions there are always enclaves suitable for the insect. It is an example of a population with high fluctuations that can take advantage of transient periods of favorable conditions and that has, because of this variability, a high degree of resilience and capacity to persist.

cloud patters by callor Shape of of calendary behow for of

A further embellishment has been added in a study of natural insect populations by Gilbert & Hughes (7). They combined an insightful field study of the interaction between aphids and their parasites with a simulation model, concentrating upon a specific locale and the events within it under different conditions of immigration from other locales. Again the important focus was upon persistence rather than degree of fluctuation. They found that specific features of the parasite-host interaction allowed the parasite to make full use of its aphid resources just short of driving the host to extinction. It is particularly intriguing that the parasite and its host were introduced into Australia from Europe and in the short period that the parasite has been present in Australia there have been dramatic changes in its developmental rate and fecundity. The other major difference between conditions in Europe and Australia is that the immigration rate of the host in England is considerably higher than in Australia. If the immigration rate in Australia increased to the English level, then, according to the model the parasite should increase its fecundity from the Australian level to the English to make the most of its opportunity short of extinction. This study provides, therefore, a remarkable example of a parasite and its host evolving together to permit persistence, and further confirms the importance of systems resilience as distinct from systems stability.

How does this le aphid & parisite stort ience.

SYNTHESIS

Some Definitions

Traditionally, discussion and analyses of stability have essentially equated stability to systems behavior. In ecology, at least, this has caused confusion since, in mathematical analyses, stability has tended to assume definitions that relate to conditions very near equilibrium points. This is a simple convenience dictated by the enormous analytical difficulties of treating the behavior of nonlinear systems at some distance from equilibrium. On the other hand, more general treatments have touched on questions of persistence and the probability of extinction, defining these measures as aspects of stability as well. To avoid this confusion I propose that the behavior of ecological systems could well be defined by two distinct properties: resilience and stability.

Resilience determines the persistence of relationships within a system and is a measure of the ability of these systems to absorb changes of state variables, driving variables, and parameters, and still persist. In this definition resilience is the property of the system and persistence or probability of extinction is the result. Stability, on the other hand, is the ability of a system to return to an equilibrium state after a temporary disturbance. The more rapidly it returns, and with the least fluctuation, the more stable it is. In this definition stability is the property of the system and the degree of fluctuation around specific states the result.

Resilience versus Stability

With these definitions in mind a system can be very resilient and still fluctuate greatly, i.e. have low stability. I have touched above on examples like the spruce budworm forest community in which the very fact of low stability seems to intro-

Best Del of Resilience Key point of paper

duce high resilience. Nor are such cases isolated ones, as Watt (41) has shown in his analysis of thirty years of data collected for every major forest insect throughout Canada by the Insect Survey program of the Canada Department of the Environment. This statistical analysis shows that in those areas subjected to extreme climatic conditions the populations fluctuate widely but have a high capability of absorbing periodic extremes of fluctuation. They are, therefore, unstable using the restricted definition above, but highly resilient. In more benign, less variable climatic regions the populations are much less able to absorb chance climatic extremes even though the populations tend to be more constant. These situations show a high degree of stability and a lower resilience. The balance between resilience and stability is clearly a product of the evolutionary history of these systems in the face of the range of random fluctuations they have experienced.

In Slobodkin's terms (36) evolution is like a game, but a distinctive one in which the only payoff is to stay in the game. Therefore, a major strategy selected is not one maximizing either efficiency or a particular reward, but one which allows persistence by maintaining flexibility above all else. A population responds to any environmental change by the initiation of a series of physiological, behavioral, ecological, and genetic changes that restore its ability to respond to subsequent unpredictable environmental changes. Variability over space and time results in variability in numbers, and with this variability the population can simultaneously retain genetic and behavioral types that can maintain their existence in low populations together with others that can capitalize on chance opportunities for dramatic increase. The more homogeneous the environment in space and time, the more likely is the system to have low fluctuations and low resilience. It is not surprising, therefore, that the commerical fishery systems of the Great Lakes have provided a vivid example of the sensitivity of ecological systems to disruption by man, for they represent climatically buffered, fairly homogeneous and self-contained systems with relatively low variability and hence high stability and low resilience. Moreover, the goal of producing a maximum sustained yield may result in a more stable system of reduced resilience.

Nor is it surprising that however readily fish stocks in lakes can be driven to extinction, it has been extremely difficult to do the same to insect pests of man's crops. Pest systems are highly variable in space and time; as open systems they are much affected by dispersal and therefore have a high resilience. Similarly, some Arctic ecosystems thought of as fragile may be highly resilient, although unstable. Certainly this is not true for some subsystems in the Arctic, such as Arctic frozen soil, self-contained Arctic lakes, and cohesive social populations like caribou, but these might be exceptions to a general rule.

The notion of an interplay between resilience and stabilty might also resolve the conflicting views of the role of diversity and stability of ecological communities. Elton (5) and MacArthur (22) have argued cogently from empirical and theoretical points of view that stability is roughly proportional to the number of links between species in a trophic web. In essence, if there are a variety of trophic links the same flow of energy and nutrients will be maintained through alternate links when a species becomes rare. However, May's (23) recent mathematical analyses of models

I Great many of

Pests fish

of a large number of interacting populations shows that this relation between increased diversity and stability is not a mathematical truism. He shows that randomly assembled complex systems are in general less stable, and never more stable, than less complex ones. He points out that ecological systems are likely to have evolved to a very small subset of all possible sets and that MacArthur's conclusions, therefore, might still apply in the real world. The definition of stability used, however, is the equilibrium-centered one. What May has shown is that complex systems might fluctuate more than less complex ones. But if there is more than one domain of attraction, then the increased variability could simply move the system from one domain to another. Also, the more species there are, the more equilibria there may be and, although numbers may thereby fluctuate considerably, the overall persistence might be enhanced. It would be useful to explore the possibility that instability in numbers can result in more diversity of species and in spatial patchiness, and hence in increased resilience.

Measurement

If there is a worthwhile distinction between resilience and stability it is important that both be measurable. In a theoretical world such measurements could be developed from the behavior of model systems in phase space. Just as it was useful to disaggregate the reproduction curves into their constituent components of mortality and fecundity, so it is useful to disaggregate the information in a phase plane. There are two components that are important: one that concerns the cyclic behavior and its frequency and amplitude, and one that concerns the configuration of forces caused by the positive and negative feedback relations.

To separate the two we need to imagine first the appearance of a phase space in which there are no such forces operating. This would produce a referent trajectory containing only the cyclic properties of the system. If the forces were operating, departure from this referent trajectory would be a measure of the intensity of the forces. The referent trajectories that would seem to be most useful would be the neutrally stable orbits of Figure 2b, for we can arbitrarily imagine these trajectories as moving on a flat plane. At least for more realistic models parameter values can be discovered that do generate neutrally stable orbits. In the complex predator-prey model of Holling (14), if a range of parameters is chosen to explore the effects of different degrees of contagion of attack, the interaction is unstable when attack is random and stable when it is contagious. We have recently shown that there is a critical level of contagion between these extremes that generates neutrally stable orbits. These orbits, then, have a certain frequency and amplitude and the departure of more realistic trajectories from these referent ones should allow the computation of the vector of forces. If these were integrated a potential field would be represented with peaks and valleys. If the whole potential field were a shallow bowl the system would be globally stable and all trajectories would spiral to the bottom of the bowl, the equilibrium point. But if, at a minimum, there were a lower extinction threshold for prey then, in effect, the bowl would have a slice taken out of one side, as suggested in Figure 4. Trajectories that initiated far up on the side of the bowl would have amplitude that would carry the trajectory over the slice out out of it. Only those

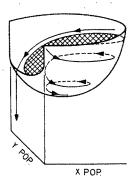


Figure 4 Diagramatic representation showing the feedback forces as a potential field upon which trajectories move. The shaded portion is the domain of attraction.

trajectories that just avoided the lowest point of the gap formed by the slice would spiral in to the bowl's bottom. If we termed the bowl the basin of attraction (Lewontin 20) then the domain of attraction would be determined by both the cyclic behavior and the configuration of forces. It would be confined to a smaller portion of the bottom of the bowl, and one edge would touch the bottom portion of the slice taken out of the basin.

This approach, then, suggests ways to measure relative amounts of resilience and stability. There are two resilience measures: Since resilience is concerned with probabilities of extinction, firstly, the overall area of the domain of attraction will in part determine whether chance shifts in state variables will move trajectories outside the domain. Secondly, the height of the lowest point of the basin of attraction (e.g. the bottom of the slice described above) above equilibrium will be a measure of how much the forces have to be changed before all trajectories move to extinction of one or more of the state variables.

The measures of stability would be designed in just the opposite way from those that measure resilience. They would be centered on the equilibrium rather than on the boundary of the domain, and could be represented by a frequency distribution of the slopes of the potential field and by the velocity of the neutral orbits around the equilibrium.

But such measures require an immeanse amount of knowledge of a system and it is unlikely that we will often have all that is necessary. Hughes & Gilbert (16), however, have suggested a promising approach to measuring probabilities of extinction and hence of resilience. They were able to show in a stochastic model that the distribution of surviving population sizes at any given time does not differ significantly from a negative binomial. This of course is just a description, but it does provide a way to estimate the very small probability of zero, i.e. of extinction, from the observed mean and variance. The configuration of the potential field and the cyclic behavior will determine the number and form of the domains of attraction, and these will in turn affect the parameter values of the negative binomial or of any