RESILIENCE AND STABILITY OF ECOLOGICAL SYSTEMS 4050 C. S. Holling Institute of Resource Ecology, University of British Columbia, Vancouver, Canada #### INTRODUCTION Individuals die, populations disappear, and species become extinct. That is one view of the world. But another view of the world concentrates not so much on presence or absence as upon the numbers of organisms and the degree of constancy of their numbers. These are two very different ways of viewing the behavior of systems and the usefulness of the view depends very much on the properties of the system concerned. If we are examining a particular device designed by the engineer to perform specific tasks under a rather narrow range of predictable external conditions, we are likely to be more concerned with consistent nonvariable performance in which slight departures from the performance goal are immediately counteracted. A quantitative view of the behavior of the system is, therefore, essential. With attention focused upon achieving constancy, the critical events seem to be the amplitude and frequency of oscillations. But if we are dealing with a system profoundly affected by changes external to it, and continually confronted by the unexpected, the constancy of its behavior becomes less important than the persistence of the relationships. Attention shifts, therefore, to the qualitative and to questions of existence or not. Our traditions of analysis in theoretical and empirical ecology have been largely inherited from developments in classical physics and its applied variants. Inevitably, there has been a tendency to emphasize the quantitative rather than the qualitative, for it is important in this tradition to know not just that a quantity is larger than another quantity, but precisely how much larger. It is similarly important, if a quantity fluctuates, to know its amplitude and period of fluctuation. But this orientation may simply reflect an analytic approach developed in one area because it was useful and then transferred to another where it may not be. Our traditional view of natural systems, therefore, might well be less a meaningful reality than a perceptual convenience. There can in some years be more owls and fewer mice and in others, the reverse. Fish populations wax and wane as a natural condition, and insect populations can range over extremes that only logarithmic Dwhat does Endangered Species Act Suggest as to this grestion Relationships become more important than important than maintaining an "equilibrity" How is this A criticism Of criticism transformations can easily illustrate. Moreover, over distinct areas, during long or short periods of time, species can completely disappear and then reappear. <u>Different</u> and useful insight might be obtained, therefore, by viewing the behavior of ecological systems in terms of the probability of extinction of their elements, and by shifting emphasis from the equilibrium states to the conditions for persistence. An equilibrium centered view is essentially static and provides little insight into the transient behavior of systems that are not near the equilibrium. Natural, undisturbed systems are likely to be continually in a transient state; they will be equally so under the influence of man. As man's numbers and economic demands increase, his use of resources shifts equilibrium states and moves populations away from equilibria. The present concerns for pollution and endangered species are specific signals that the well-being of the world is not adequately described by concentrating on equilibria and conditions near them. Moreover, strategies based upon these two different views of the world might well be antagonistic. It is at least conceivable that the effective and responsible effort to provide a maximum sustained yield from a fish population or a nonfluctuating supply of water from a watershed (both equilibrium-centered views) might paradoxically increase the chance for extinctions. The purpose of this review is to explore both ecological theory and the behavior of natural systems to see if different perspectives of their behavior can yield different insights useful for both theory and practice. ## Some Theory Let us first consider the behavior of two interacting populations: a predator and its prey, a herbivore and its resource, or two competitors. If the interrelations are at all regulated we might expect a disturbance of one or both populations in a constant environment to be followed by fluctuations that gradually decrease in amplitude. They might be represented as in Figure 1, where the fluctuations of each population over time are shown as the sides of a box. In this example the two populations in some sense are regulating each other, but the lags in the response generate a series of oscillations whose amplitude gradually reduces to a constant and sustained value for each population. But if we are also concerned with persistence we would like to know not just how the populations behave from one particular pair of starting values, but from all possible pairs since there might well be combinations of starting populations for which ultimately the fate of one or other of the populations is extinction. It becomes very difficult on time plots to show the full variety of responses possible, and it proves convenient to plot a trajectory in a phase plane. This is shown by the end of the box in Figure 1 where the two axes represent the density of the two populations. The trajectory shown on that plane represents the sequential change of the two populations at constant time intervals. Each point represents the unique density of each population at a particular point in time and the arrows indicate the direction of change over time. If oscillations are damped, as in the case shown, then the trajectory is represented as a closed spiral that eventually reaches a stable equilibrium. Do people understand this "Phase Plane" diagran Figure 1 Derivation of a phase plane showing the changes in numbers of two populations over time. We can imagine a number of different forms for trajectories in the phase plane (Figure 2). Figure 2a shows an open spiral which would represent situations where fluctuations gradually increase in amplitude. The small arrows are added to suggest that this condition holds no matter what combination of populations initiates the trajectory. In Figure 2b the trajectories are closed and given any starting point eventually return to that point. It is particularly significant that each starting point generates a unique cycle and there is no tendency for points to converge to a single cycle or point. This can be termed "neutral stability" and it is the kind of stability achieved by an imaginary frictionless pendulum. Figure 2c represents a stable system similar to that of Figure 1, in which all possible trajectories in the phase plane spiral into an equilibrium. These three examples are relatively simple and, however relevant for classical stability analysis, may well be theoretical curiosities in ecology. Figures 2d–2f add some complexities. In a sense Figure 2d represents a combination of a and c, with a region in the center of the phase plane within which all possible trajectories spiral inwards to equilibrium. Those outside this region spiral outwards and lead eventually to extinction of one or the other populations. This is an example of local stability in contrast to the global stability of Figure 2c. I designate the region within which stability occurs as the domain of attraction, and the line that contains this domain as the boundary of the attraction domain. The trajectories in Figure 2e behave in just the opposite way. There is an internal region within which the trajectories spiral out to a stable limit cycle and beyond Figure 2 Examples of possible behaviors of systems in a phase plane; (a) unstable equilibrium, (b) neutrally stable cycles, (c) stable equilibrium, (d) domain of attraction, (e) stable limit cycle, (f) stable node. which they spiral inwards to it. Finally, a stable node is shown in Figure 2f in which there are no oscillations and the trajectories approach the node monotonically. These six figures could be combined in an almost infinite variety of ways to produce several domains of attraction within which there could be a stable equilibrium, a stable limit cycle, a stable node, or even neutrally stable orbits. Although I have presumed a constant world throughout, in the presence of random fluctuations of parameters or of driving variables (Walters 39), any one trajectory could wander with only its general form approaching the shape of the trajectory shown. These added complications are explored later when we consider real systems. For the moment, however, let us review theoretical treatments in the light of the possibilities suggested in Figure 2. The present status of ecological stability theory is very well summarized in a number of analyses of classical models, particularly May's (23–25) insightful analyses of the Lotka-Volterra model and its expansions, the graphical stability analyses of Rosenzweig (33, 34), and the methodological review of Lewontin (20). May (24) reviews the large class of coupled differential equations expressing the rate of change of two populations as continuous functions of both. The behavior of these models results from the interplay between (a) stabilizing negative feedback or density-dependent responses to resources and predation, and (b) the destabilizing effects produced by the way individual predators attack and predator numbers respond to prey density [termed the functional and numerical responses, as in Holling (11)]. Various forms have been given to these terms; the familiar Lotka-Volterra model includes the simplest and least realistic, in which death of prey is caused only by predation, predation is a linear function of the product of prey and which of the sound predator populations, and growth of the predator population is linearly proportional to the same product. This model generates neutral stability as in Figure 2b, but the assumptions are very unrealistic since very few components are included, there are no explicit lags or spatial elements, and thresholds, limits, and nonlinearities are missing. These features have all been shown to be essential properties of the predation process (Holling 12, 13) and the effect of adding some of them has been analyzed by May (24). He points out that traditional ways of analyzing the stability properties of models using analytical or graphical means (Rosenzweig & MacArthur 33, Rosenzweig 34, 35) concentrate about the immediate neighborhood of the equilibrium. By doing this, linear techniques of analysis can be applied that are analytically tractable. Such analyses show that with certain defined sets of parameters stable equilibrium points or nodes exist (such as Figure 2c), while for other sets they do not, and in such cases the system is, by default, presumed to be unstable, as in Figure 2a. May (24), however, invokes a little-used theorem of Kolmogorov (Minorksy 26) to show that all these models have either a stable equilibrium point or a stable limit cycle (as in Figure 2e). Hence he concludes that the conditions presumed by linear analysis are unstable, and in fact must lead to stable limit cycles. In every instance, however, the models are globally rather than locally stable, limiting their behavior to that shown in either Figures 2c or 2e. There is another tradition of models that recognizes the basically discontinuous features of ecological systems and incorporates explicit lags. Nicholson and Bailey initiated this tradition when they developed a model using the output of attacks and survivals within one generation as the input for the next (29). The introduction of this explicit lag generates oscillations that increase in amplitude until one or other of the species becomes extinct (Figure 2a). Their assumptions are as unrealistically simple as Lotka's and Volterra's; the instability results because the number of attacking predators at any moment is so much a consequence of events in the previous generation that there are "too many" when prey are declining and "too few" when prey are increasing. If a lag is introduced into the Lotka-Volterra formulation (Wangersky & Cunningham 40) the same instability results. The sense one gains, then, of the behavior of the traditional models is that they are either globally unstable or globally stable, that neutral stability is very unlikely, and that when the models are stable a limit cycle is a likely consequence. Many, but not all, of the simplifying assumptions have been relaxed in simulation models, and there is one example (Holling & Ewing 14) that joins the two traditions initiated by Lotka-Volterra and Nicholson and Bailey and, further, includes more realism in the operation of the stabilizing and destabilizing forces. These modifications are described in more detail later; the important features accounting for the difference in behavior result from the introduction of explicit lags, a functional response of predators that rises monotonically to a plateau, a nonrandom (or contagious) attack by predators, and a minimum prey density below which reproduction does not occur. With these changes a very different pattern emerges that conforms most closely to Figure 2d. That is, there exists a domain of attraction within which there is a stable equilibrium; beyond that domain the prey population becomes extinct. Unlike the Nicholson and Bailey model, the stability becomes possible, although in a limited region, because of contagious attack. [Contagious attack implies that for one reason or another some prey have a greater probability of being attacked than others, a condition that is common in nature (Griffiths & Holling 9).] The influence of contagious attack becomes significant whenever predators become abundant in relation to the prey, for then the susceptible prey receive the burden of attention, allowing more prey to escape than would be expected by random contact. This "inefficiency" of the predator allows the system to counteract the destabilizing effects of the lag. If this were the only difference the system would be globally stable, much as Figure 2c. The inability of the prey to reproduce at low densities, however, allows some of the trajectories to cut this reproduction threshold, and the prey become extinct. This introduces a lower prey density boundary to the attraction domain and, at the same time, a higher prey density boundary above which the amplitudes of the oscillations inevitably carry the population below the reproduction threshold. The other modifications in the model, some of which have been touched on above, alter this picture in degree only. The essential point is that a more realistic representation of the behavior of interacting populations indicates the existence of at least one domain of attraction. It is quite possible, within this domain, to imagine stable equilibrium points, stable nodes, or stable limit cycles. Whatever the detailed configuration, the existence of discrete domains of attraction immediately suggests important consequences for the persistence of the system and the probability of its extinction. Such models, however complex, are still so simple that they should not be viewed in a definitive and quantitative way. They are more powerfully used as a starting point to organize and guide understanding. It becomes valuable, therefore, to ask what the models leave out and whether such omissions make isolated domains of attraction more or less likely. Theoretical models generally have not done well in simultaneously incorporating realistic behavior of the processes involved, randomness, spatial heterogeneity, and an adequate number of dimensions or state variables. This situation is changing very rapidly as theory and empirical studies develop a closer technical partnership. In what follows I refer to real world examples to determine how the four elements that tend to be left out might further affect the behavior of ecological systems. #### SOME REAL WORLD EXAMPLES ## Self-Contained Ecosystems In the broadest sense, the closest approximation we could make of a real world example that did not grossly depart from the assumptions of the theoretical models would be a self-contained system that was fairly homogenous and in which climatic fluctuations were reasonably small. If such systems could be discovered they would reveal how the more realistic interaction of real world processes could modify the patterns of systems behavior described above. Very close approximations to any of these conditions are not likely to be found, but if any exist, they are apt to be fresh what does this mean? water aquatic ones. Fresh water lakes are reasonably contained systems, at least within their watersheds; the fish show considerable mobility throughout, and the properties of the water buffer the more extreme effects of climate. Moreover, there have been enough documented man-made disturbances to liken them to perturbed systems in which either the parameter values or the levels of the constituent populations are changed. In a crude way, then, the lake studies can be likened to a partial exploration of a phase space of the sorts shown in Figure 2. Two major classes of disturbances have occurred: first, the impact of nutrient enrichment from man's domestic and industrial wastes, and second, changes in fish populations by harvesting. The paleolimnologists have been remarkably successful in tracing the impact of man's activities on lake systems over surprisingly long periods. For example, Hutchinson (17) has reconstructed the series of events occurring in a small crater lake in Italy from the last glacial period in the Alps (2000 to 1800 BC) to the present. Between the beginning of the record and Roman times the lake had established a trophic equilibrium with a low level of productivity which persisted in spite of dramatic changes in surroundings from Artemesia steppe, through grassland, to fir and mixed oak forest. Then suddenly the whole aquatic system altered. This alteration towards eutrophication seems to have been initiated by the construction of the Via Cassia about 171 BC, which caused a subtle change in the hydrographic regime. The whole sequence of environmental changes can be viewed as changes in parameters or driving variables, and the long persistence in the face of these major changes suggests that natural systems have a high capacity to absorb change without % dramatically altering. But this resilient character has its limits, and when the limits are passed, as by the construction of the Roman highway, the system rapidly changes to another condition. More recently the activities of man have accelerated and limnologists have recorded some of the responses to these changes. The most dramatic change consists of blooms of algae in surface waters, an extraordinary growth triggered, in most instances, by nutrient additions from agricultural and domestic sources. While such instances of nutrient addition provide some of the few examples available of perturbation effects in nature, there are no controls and the perturbations are exceedingly difficult to document. Nevertheless, the qualitative pattern seems consistent, particularly in those lakes (Edmundson 4, Hasler 10) to which sewage has been added for a time and then diverted elsewhere. This pulse of disturbance characteristically triggers periodic algal blooms, low oxygen conditions, the sudden disappearance of some plankton species, and appearance of others. As only one example, the nutrient changes in Lake Michigan (Beeton 2) have been accompanied by the replacement of the cladoceran Bosmina coregoni by B. Longirostris, Diaptomus oregonensis has become an important copepod species, and a brackish water copepod Eurytemora affinis is a new addition to the zooplankton. In Lake Erie, which has been particularly affected because of its shallowness and intensity of use, the mayfly *Hexagenia*, which originally dominated the benthic community, has been almost totally replaced by oligochetes. There have been blooms of the diatom *Melosira binderana*, which had never been reported from the How are a lake Studies experiment perfect experiment four is relevant four is relevant folial warming What is the conclusion regarding ke ecosystem to human sperturbations perturbations United States until 1961 but now comprises as much as 99% of the total phytoplankton around certain islands. In those cases where sewage has been subsequently diverted there is a gradual return to less extreme conditions, the slowness of the return related to the accumulation of nutrients in sediments. The overall pattern emerging from these examples is the sudden appearance or disappearance of populations, a wide amplitude of fluctuations, and the establishment of new domains of attraction. The history of the Great Lakes provides not only some particularly good information on responses to man-made enrichment, but also on responses of fish populations to fishing pressure. The eutrophication experience touched on above can be viewed as an example of systems changes in driving variables and parameters, whereas the fishing example is more an experiment in changing state variables. The fisheries of the Great Lakes have always selectively concentrated on abundant species that are in high demand. Prior to 1930, before eutrophication complicated the story, the lake sturgeon in all the Great Lakes, the lake herring in Lake Erie, and the lake whitefish in Lake Huron were intensively fished (Smith 37). In each case the pattern was similar: a period of intense exploitation during which there was a prolonged high level harvest, followed by a sudden and precipitous drop in populations. Most significantly, even though fishing pressure was then relaxed, none of these populations showed any sign of returning to their previous levels of abundance. This is not unexpected for sturgeon because of their slow growth and late maturity, but it is unexpected for herring and whitefish. The maintenance of these low populations in recent times might be attributed to the increasingly unfavorable chemical or biological environment, but in the case of the herring, at least, the declines took place in the early 1920s before the major deterioration in environment occurred. It is as if the population had been shifted by fishing pressure from a domain with a high equilibrium to one with a lower one. This is clearly not a condition of neutral stability as suggested in Figure 2b since once the populations were lowered to a certain point the decline continued even though fishing pressure was relaxed. It can be better interpreted as a variant of Figure 2d where populations have been moved from one domain of attraction to another. Since 1940 there has been a series of similar catastrophic changes in the Great Lakes that has led to major changes in the fish stocks. Beeton (2) provides graphs summarizing the catch statistics in the lakes for many species since 1900. Lake trout, whitefish, herring, walleye, sauger, and blue pike have experienced precipitous declines of populations to very low values in all of the lakes. The changes generally conform to the same pattern. After sustained but fluctuating levels of harvest the catch dropped dramatically in a span of a very few years, covering a range of from one to four orders of magnitude. In a number of examples particularly high catches were obtained just before the drop. Although catch statistics inevitably exaggerate the step-like character of the pattern, populations must have generally behaved in the way described. The explanations for these changes have been explored in part, and involve various combinations of intense fishing pressure, changes in the physical and chemical environment, and the appearance of a foreign predator (the sea lamprey) and Changing of the variable What did fishing Charvesting: As to fish populations what complications what complications oslow growth & repealed rates of some species a change to driving variable 3 other species & competition foreign competitors (the alewife and carp). For our purpose the specific cause is of less interest than the inferences that can be drawn concerning the resilience of these systems and their stability behavior. The events in Lake Michigan provide a typical example of the pattern in other lakes (Smith 37). The catch of lake trout was high, but fluctuated at around six million pounds annually from 1898 to 1940. For four years catches increased noticeably and then suddenly collapsed to near extinction by the 1950s due to a complete failure of natural reproduction. Lake herring and whitefish followed a similar pattern (Beeton 2: Figure 7). Smith (37) argues that the trigger for the lake trout collapse was the appearance of the sea lamprey that had spread through the Great Lakes after the construction of the Welland Canal. Although lamprey populations were extremely small at the time of the collapse, Smith argues that even a small mortality, added to a commercial harvest that was probably at the maximum for sustained yield, was sufficient to cause the collapse. Moreover, Ricker (31) has shown that fishing pressure shifts the age structure of fish populations towards younger ages. He demonstrates that a point can come where only slight increases in mortality can trigger a collapse of the kind noted for lake trout. In addition, the lake trout was coupled in a network of competitive and predatory interconnections with other species, and pressures on these might have contributed as well. Whatever the specific causes, it is clear that the precondition for the collapse was set by the harvesting of fish, even though during a long period there were no obvious signs of problems. The fishing activity, however, progressively reduced the resilience of the system so that when the inevitable unexpected event occurred, the populations collapsed. If it had not been the lamprey, it would have been something else: a change in climate as part of the normal pattern of fluctuation, a change in the chemical or physical environment, or a change in competitors or predators. These examples again suggest distinct domains of attraction in which the populations forced close to the boundary of the domain can then flip over it. The above examples are not isolated ones. In 1939 an experimental fishery was started in Lake Windermere to improve stocks of salmonids by reducing the abundance of perch (a competitor) and pike (a predator). Perch populations were particularly affected by trapping and the populations fell drastically in the first three years. Most significantly, although no perch have been removed from the North Basin since 1947, populations have still not shown any tendency to return to their previous level (Le Cren et al 19). The same patterns have even been suggested for terrestrial systems. Many of the arid cattle grazing lands of the western United States have gradually become invaded and dominated by shrubs and trees like mesquite and cholla. In some instances grazing and the reduced incidence of fire through fire prevention programs allowed invasion and establishment of shrubs and trees at the expense of grass. Nevertheless, Glendening (8) has demonstrated, from data collected in a 17-year experiment in which intensity of grazing was manipulated, that once the trees have gained sufficient size and density to completely utilize or materially reduce the moisture supply, elimination of grazing will not result in the grassland reestablishing itself. In short, there is a level of the state variable "trees" that, once achieved, moves Trees, grasses, and grazing shift from another how? the system from one domain of attraction to another. Return to the original domain can only be made by an explicit reduction of the trees and shrubs. These examples point to one or more distinct domains of attraction in which the important point is not so much how stable they are within the domain, but how likely it is for the system to move from one domain into another and so persist in a changed configuration. This sampling of examples is inevitably biased. There are few cases well documented over a long period of time, and certainly some systems that have been greatly disturbed have fully recovered their original state once the disturbance was removed. But the recovery in most instances is in open systems in which reinvasion is the key ingredient. These cases are discussed below in connection with the effects of spatial heterogeneity. For the moment I conclude that distinct domains of attraction are not uncommon within closed systems. If such is the case, then further confirmation should be found from empirical evidence of the way processes which link organisms operate, for it is these processes that are the cause of the behavior observed. ### Process Analysis One way to represent the combined effects of processes like fecundity, predation, and competition is by using Ricker's (30) reproduction curves. These simply represent the population in one generation as a function of the population in the previous generation, and examples are shown in Figures 3a, c, and e. In the simplest form, and the one most used in practical fisheries management (Figure 3a), the reproduction curve is dome-shaped. When it crosses a line with slope 1 (the straight line in the figures) an equilibrium condition is possible, for at such cross-overs the popula- Figure 3 Examples of various reproduction curves (a, c, and e) and their derivation from the contributions of fecundity and mortality (b, d, and f).