Intermountain Rural Electric Association Spatial Electric Load Forecasting (IREA SELF)

Phase 1 Urban Growth Simulator Application

Written By: Duane Holt October 17, 2008

Written For: Masters Project Committee

Dr. Sharolyn Anderson – Advisor Assistant Professor Dr. Paul Sutton – Reader Associate Professor

University of Denver School of Natural Sciences and Mathematics Department of Geography

Andrew Long - Client Director of Planning Intermountain Rural Electric Association

Disclaimer

Purpose

This project documentation was written for the sole purpose of completing a required element pursuant to a Masters of Science degree in Geographic Information Sciences at the University of Denver's Geography Department (DU). Intermountain REA and DU are not responsible or liable for any of the information presented in this document.

Audience

The intended audiences of this document are Intermountain REA, the University of Denver's Geography Department, and Duane Holt. This document will also be archived in the University of Denver's Geography Department for student and faculty review.

Confidentiality

This is a privileged and confidential document between Intermountain REA and Duane Holt. Other than academic purposes, no part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form by any means (electronic, mechanical, photocopying, recording, or otherwise), without prior written permission from the Intermountain REA and Duane Holt.

Copyright © Duane Holt all rights reserved.

Abstract

Intermountain Rural Electric Association (IREA) has embarked on a project to perform Spatial Electric Load Forecasting. This project is broken into two phases, the first being accurate prediction of urban growth that may require IREA to identify areas where new facilities are required and the second being the prediction of electrical load demands in the newly predicted urban growth. This paper covers the first phase of the project that predicts urban growth.

The requirements of the urban growth phase of the project are set to make the project repeatable and sharable among the electric utility community. This requires that the urban growth prediction be performed on single Windows based PC's running ESRI software and programmed in a common language that is also portable. Visual basic was used to create windows based forms that read, manipulate and write raster data files using ESRI ArcObjects.

The urban growth predictions were performed using similar methods as those found in the SLEUTH urban growth model developed by Dr. Keith Clarke at the University of California, Santa Barbara. The model is a cellular automata model meaning that cells are affected and changed based on the values of its neighboring cells. This model utilizes raster datasets of the same resolution and spatial extent for seed files in the urban growth model. These datasets represent current urban extents, areas where urban growth would be excluded, transportation data, and slope values for the study area. The SLEUTH model has three processing modes. First is the Calibration mode where coefficient factors affecting growth are determined from historical simulations. Second is a Self Modifying mode that adjusts the coefficients based on growth rates. Third is the prediction phase where urban growth is simulated.

There are five coefficients that affect growth prediction. They are Dispersion, Spread, Breed, Slope Resistance, and Road Gravity. There are four growth rules in the growth prediction. They are Spontaneous Growth, Breed Growth, Edge Growth, and Road Gravity Growth. Spontaneous growth uses the dispersion coefficient to randomly select cells to become urban. Breed growth uses the breed coefficient to determine if the spontaneously grown urban cells will become urban centers. Edge growth uses the spread coefficient to determine how much an urban center will expand. Road gravity

uses all the coefficients to determine how much growth will occur because of transportation in the proximity.

Calibration is the most time consuming process mode of the growth simulator. This paper presents a calibration method that attempts to save considerable time. This method, termed the High-Low Coefficient Determination, searches coefficient ranges by testing a high value and a low value in the range. The value with the better results determines the next range searched and thus the next values tested. Considerable application development changes were also made to increase the speed of calibration.

Growth prediction was not as accurate as expected. Various methods for checking the accuracy are presented in this paper. The accuracy problems are likely due to a rushed calibration process. Despite the accuracy concern, the simulator application has proven to be a useful tool that met the requirements of the project by being a Windows based urban growth prediction application programmed in a common programming language utilizing ESRI ArcGIS technology.

Table of Contents

Abstract	iii
Table of Contents	v
Table of Figures	vii
Trademarks	viii
Trademarks	viii
Glossary and Acronyms	
Chapter 1- SELF Project Background	1
Introduction	1
IREA Statistics	
Technical Environment	
Needs & Benefits	
Project Components	3
Background	
Descriptive Urban Models	
Mathematical Urban Models	
Modeling Considerations	
Specific Urban Growth Models	
Spatial Electric Load Forecasting	9
Project Scope	
Spatial	
Precision	
Chapter 2 – SELF Project Urban Growth Simulation Process	
Project Data-Urban Growth Simulation Phase	
Slope	
Land Use / Urban Extent	
Exclusion	
Transportation	
Hillshade	
Urban Growth Simulation Methods	
Calibration Coefficients	
Calibration Rules	
Calibration Process	
Urban Growth Simulation Interface.	
Urban Growth Simulation Output	
Raster Data	
Statistical Logs	
Statistical Metrics	
Urban Growth Simulation Development	
ArcObjects	
VBA vs. Visual Basic	
Specific Coding Challenges	
Chapter 3 – SELF Project Urban Growth Simulation Findings	
Results	
Previous Study	47

Coefficient Determination Process	48
Visual Check	51
Error matrices	53
Predicted Growth	56
Conclusions	59
Concerns	59
Preliminary growth prediction	60
County Planning and Land Development Issues	60
Economic issues	61
Future Considerations	61
Self Modifying	61
Calibration Considerations	62
SELF Project Phase 2 – Projecting Electrical Load	63
Bibliography	
Appendix A – IREA Territory Maps	C
Service Territory Map	C
Plains Region Map	D
Mountains Region Map	E
Appendix B – Self Project Input Data Examples	
Hillshade	
Slope	F
Exclusion	G
Transportation	G
Seed Urban Extent (1980)	Н
Control Year Urban Extent (2005)	
Appendix C – Growth Simulator Raster Output Examples	I
Appendix D – Growth Simulator Statistical Output Examples	
Iterations.Log	
Actuals.Log	
Averages.Log	
Statistics.Log	
Appendix E – Growth Simulator Statistical Analysis	
Calibration 1	M
Calibration 2	N
Calibration 3	
Calibration 4	P
Calibration 5	
Calibration 6	~
Calibration 7	
Calibration 8	
Calibration 9	IJ

Table of Figures

Figure 1 – Dataset examples	16
Figure 2 – Pseudo Code for Spontaneous Growth	19
Figure 3 – Spontaneous Growth	
Figure 4 – Pseudo Code for Breed Growth	19
Figure 5 – Breed Growth	
Figure 6 – Pseudo Code for Spread Growth	20
Figure 7 – Spread Growth	
Figure 8 – Pseudo Code for Road Gravity Growth	22
Figure 9 – Road Gravity Growth	
Figure 10 – Pseudo Code show how slope is used	
Figure 11 – Cycle of Coefficient Determination	25
Figure 12 – High-Low Coefficient Determination	27
Figure 13 - Seed Files Panel	29
Figure 14 - Coefficients Panel	30
Figure 15 – Land Cover Control Panel	31
Figure 16 – Transportation Control Panel	
Figure 17 – Output Panel	33
Figure 18 – Calibration Process Program Flow	35
Figure 19 – Directional Priority of Neighborhood Transportation Cell Search	45
Figure 20 – Cluster Perimeter Measurment	47
Figure 21 – Previous Study Coefficient Results for SELF Study Area	48
Figure 22 – Calibration Run Evaluation Sheet	49
Figure 23 – "Top 3" coefficient runs for each metric	50
Figure 24 –Run Frequency in Top 3 sets	50
Figure 25 – Solution for next calibration	51
Table 1 –Visual Check Classification	52
Figure 26 – Visual Check Classification	53
Figure 27 - Error matrix for the calibration control years 1985, 1990, 1995, & 2000	54
Figure 28 – Producer and User Accuracy formulae	55
Figure 29 -Omission, Commission, and Map Accuracy formulae	55
Figure 30 –30 years of Urban Growth Prediction	
Figure 31 – Predicted 2030 Urban Extent in IREA service area	

Trademarks

Autodesk, AutoCAD, Map 3D, and MapGuide are either registered trademarks or trademarks of Autodesk, Inc., in the USA and/or other countries.

ESRI, ArcView, ArcGIS, ArcObjects and ArcIMS are trademarks, registered trademarks, or service marks of ESRI in the United States, the European Community, or certain other jurisdictions.

Microsoft, Windows, Word, Excel and Office are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation and/or its affiliates.

Glossary and Acronyms

<u>Breed</u> – A coefficient in the growth simulation program that determines the probability that lone urban cells will become urban growth centers.

<u>Calibration Mode</u> – Processing mode that simulates growth with specified model coefficients in every combination to derive the best historical match of urban growth.

<u>Coefficient Start Value</u> – The initial (low) coefficient value used for the calibration process.

<u>Coefficient Step Value</u> – Value added to initial coefficients to search other coefficients in the calibration process.

<u>Coefficient Stop Value</u> – The maximum coefficient value used for the calibration process.

<u>Control Year</u> – A year where historical urban extent data exists and is used for comparison in the calibration mode.

Growth Mode – The processing mode that simulates future urban growth using the coefficient results from the calibration process.

<u>Critical Slope</u> – The maximum slope percentage that will allow urban growth to occur. For this project, the critical slope is 21%.

<u>Diffusion</u> – For this project, interchangeable with Dispersion. See Dispersion.

<u>Dispersion</u> – A coefficient in the growth simulation program that determines the probability of spontaneous growth.

Edge Growth – A growth rule in the growth simulation program that determines the amount of urban growth spread from an urban center.

<u>Geographical Information Systems</u> – In this document, refers to the software, hardware, and people that manage information pertaining to IREA's electric distribution facilities and consumers and their spatial locations to be referenced for mapping, locating, and managing those facilities and consumers.

<u>GIS</u> – Refers to a general term more specifically known as Geographical Information Systems.

IREA – Intermountain Rural Electric Association

<u>LeeSallee</u> – A key statistical result that measures the spatial correlation of simulated urban growth. This statistic is the intersected cells between simulated and actual urban cells divided by the union of simulated and actual urban cells. $S \cap A/S \cup A$ Results closer to 1 indicate a stronger spatial correlation.

PC – Pentium based Personal Computer

<u>NLCD</u> – National Land Cover Dataset maintained by the United States Environmental Protection Agency

Road Gravity – A coefficient value representing the probability of urban growth to occur along transportation routes.

<u>Run</u> – A process of growth cycles for a given number of iterations and number of years for a given set of coefficients.

<u>Seed Year</u> – The start year for calibration or growth processes. There must be a historical urban extent data set for this year.

SELF - Spatial Electric Load Forecasting

<u>Slope Resistance</u> – A coefficient value representing the resistance of urban growth to steeper slopes.

<u>Spontaneous Growth</u> – A growth rule in the growth simulation program that determines the probability that a randomly selected location will become urban.

<u>Spread</u> – The type of urban growth where small developed regions become urban centers. Also a coefficient in the growth simulation program that determines the probability that spread growth will occur.

Chapter 1- SELF Project Background

Introduction

Intermountain Rural Electric Association (IREA) has agreed to participate in a student project acting as the client for the project. The project is a partial requirement for the completion of a Masters of Science Degree in Geographical Information Science from the University of Denver's Geography Department in the School of Natural Sciences and Mathematics. This project and all rights, implicit or explicit, remain the property of the student and IREA jointly.

This project will allow IREA to perform forecasting of electric loads using spatial methods. The IREA Spatial Electric Load Forecasting (SELF) Project will be completed utilizing hardware, software and methods common to Geographic Information Sciences (GIS).

The project consists of two phases. The first phase attempts to predict urban expansion in the IREA territory. The second phase applies historical electric load trends on the predicted urban expansion. Load centers are determined to aid in the planning and procurement of future facility locations. This document covers phase 1, the Urban Growth Simulator Application

IREA Statistics

Intermountain REA is an electric distribution cooperative that operates in the suburban regions of the Denver Metropolitan area. They serve 138,000 customers over ten counties. IREA is the largest electric cooperative in Colorado and the 5th largest electric cooperative in the United States. IREA maintains 7,700 distribution line miles, 39 substations, 1,000 transmission line miles, and is a financial participant in one power generation plant. IREA serves a customer base ranging from dense urban service areas with 1000 customers per square mile to remote single customer areas with 1 customer per square mile. The customer base for IREA is broken down into 92% residential and 8% commercial. Service is provided to the customer base through overhead and underground distribution lines with 60% of the customers served though underground lines and 40% served through overhead lines. The densest population is

generally served with underground lines so it is not surprising that only 35% of the distribution line miles are underground and 65% are overhead.

Technical Environment

Intermountain REA maintains records of facilities through CAD and GIS technologies. IREA has recently implemented a GIS that is comprised of ESRI software called ArcGIS. All facility spatial data are maintained in the GIS utilizing geodatabase and ESRI's SDE software for query access. The geodatabase is stored in Oracle on a network server. Client side workstations are PC based. The GIS technologies are overseen by a department of 2 GIS technicians and one GIS supervisor. The GIS department is overseen by the Planning department in the Engineering division of IREA.

Electric load data are the demand or amount of electricity required to serve customers over the whole system. Customer consumption data are the amount of electricity used by a single customer. Consumption data is a measure of actual usage whereas load data is a predictor of how much electricity is required to have available for service. Customer data and electric consumption data are maintained in the Information Services division of IREA. The data are stored in a relational database on a network server. The electric system's load data are maintained by the Planning department. The data are stored in Microsoft's SQL Server relational database on a network server.

Needs & Benefits

Intermountain REA has had difficulties in the past acquiring land for substations and transmission routes. This land is required to build new facilities so that the growing electric demands can be met. Opposition to these types of facilities is strong among the general public. While there is the desire to have reliable service, there is the "not in my back yard" attitude which blocks IREA's attempts to construct needed facilities. At one point, this problem reached a point of impasse requiring service moratoriums, condemnation hearings and many other expensive meetings and public hearings. It is the desire of IREA to never reach a similar point causing such negative impacts to the public and IREA as were seen previously. As a result, IREA has taken a progressive approach to the planning of new facilities.

The Intermountain REA Spatial Electric Load Forecasting (IREA SELF) project is one method to the progressive planning approach. The desired result of the project is the ability to predict future electric load needs with enough location precision to begin land procurement. This ability should be able to be performed for different time spans such as five, ten or even twenty year projections. It is also desirable that a project of this type be portable. Results from this project's methods will likely be valuable to other utilities; therefore it has been completed using standard software and flexible constraints to allow use in other locations.

There are many benefits to be realized from the SELF project. Land procurement at early stages of growth tends to be less expensive less contested. Planning facilities and land use around procured land with a defined use intent is less ambiguous for both IREA and land developers. Construction design and materials ordering can begin earlier resulting in fewer delays to providing service. The most important benefit is that the public is less likely to be combative about new facilities when the intended use of a property has been disclosed early on. This will result in better public relations and less litigation costs for IREA.

Project Components

The SELF project employs scientific methods and modeling to accurately project the urban growth of the Denver Metropolitan area particularly those in the IREA service territory. In addition the project applies electric load estimations to the predicted growth areas. As a last requirement of the project, the entire process has been completed with ESRI's ArcObjects and Microsoft's Visual Basic programming language. This allows sharing of the technology. The Urban Growth Simulator program has been constructed in a manner that allows varying levels of data input and output allowing other users flexibility based on their needs and resources.

The urban growth simulation phase of this project required a data precision fine enough to determine potential substation locations. IREA substations range in size from one acre to eight acres. A one acre substation will contain three single phase platform mounted transformers and two feeders. The largest substation contains three large pad mounted three phase transformers and twenty feeders. The average

substation will contain two pad mounted three phase transformers and twelve feeders. This size substation requires approximately 5 acres of land. For this reason, the urban growth simulation uses a cell size of 150 meters square. That means that each cell is 2.25 hectares or about 5.5 acres.

The electric load forecasting phase of the project utilizes historical load data. Actual load data can be calculated from the kilowatt-hour meter reads of each customer. Each customer has a geographical location thereby pinpointing the load for each customer. Since customer densities vary across the IREA territory, the spatial precision of load data will also vary. Electrical load forecasting will be carried out in the second phase of the SELF project under a separate document.

Background

One of the goals of science is the description and prediction real phenomena. Often times these phenomena are too large and complex to explain completely. To overcome this complexity, the study is either reduced in scope or simplified with the use of a model. Much the same way a model airplane allows a child to observe and manipulate the aircraft facsimile; scientific models allow observation, description, and prediction of real world phenomena. Models are a collection of scientific deductions assembled precisely to mimic the attributes of a scientific theory.

Modeling is not a new concept to the electric utility. Many electric utilities will employ one or more models in daily operations. Typically these models are network based models. A network based model is a compilation of points and lines connected together with relationship to each other that describes the real world wires and equipment that make up an electric utility distribution system. The electric utility model typically contains a source and then expands outward, or downstream, in a radial fashion to the customer meters. Some utilities will have a looped network that feeds back onto itself, but that is not the practice at IREA.

The first phase of this project uses a model to simulate the urban growth. There are many factors that contribute to the expansion of urban development. While there are too many to list, the common factors include proximity to goods and services, transportation capacity, and desirable habitat. There are almost as many models for

urban growth as there are factors contributing to it. Some models are descriptive in nature whereas some are mathematical representations.

Descriptive Urban Models

There are several models that try to describe the urban dynamics (Candau, June 2002). In the early 1800's, the VonThunen model was developed. This model is sometimes referred to as the Central Pole Theory where all urban is centered about a central point. The VonThunen model based land cost on agricultural markets. VonThunen observed that those with vegetable crop were more likely to pay higher rents closer to the city than those with ambulatory livestock who lived further from the city at lower rents. The model describes land closer to the city as being smaller in plot size and more expensive then land further from the city. While the model still holds some legitimacy, it did not account for transportation networks or physical geography.

In the middle 1920's, E. W. Burgess devised the Concentric Zone Theory to describe urban areas. The Concentric Zone Theory is based on industrialization and the workers of the industries. The urban area is divided into rings, or zones, from the center outward much like an archery target. Zone 1 contains the central business district. Zone 2, surrounding zone 1, is the multi-use zone of lower class housing mixed with industry. Surrounding zones 1 & 2 is zone 3 made up of residences for the factory working class. Further out is zone 4 comprised of middle class commuter residences. The last zone and furthest from the urban center is comprised of the upper class. This model also holds legitimacy but disregards physical geography.

In 1933, Walter Christaller developed the Central Place Theory. This is different than the Central Pole Theory. The Central Place Theory model states that there is a central community that is supported by surrounding smaller communities. The further out from the central community, the smaller the supporting communities. These supporting communities are part of the sphere of influence by the central community. Each smaller community also serves as its own central community with its own sphere of influence. Christaller noted that when all the communities were connected, the spheres of influence formed geometric shapes such as triangles and hexagons.

In 1939, Hoyt expands on the Concentric Zone Theory with the Sector Theory. This theory incorporates travel routes which extends portions of the zones outward along the routes. Where travel routes do not exist, certain zones won't exist. The result is segregated sectors of the zones. To further this expansion away from the central urban center, C. D. Harris and E. L. Ullman develop the Multiple Nuclei Theory. This theory states that the central business districts are dispersed throughout the urban area. These disperse business districts are influenced by worker proximity and product distribution. The results are a closer representation of current urban expansion.

Mathematical Urban Models

Urban Geography has always been interested in the expanding urban landscape. Older growth simulation methods were cumbersome and difficult to prove accuracy but GIS has renewed the interest and allows newer perspectives on growth simulation models (Aitken, Mitchell, & Staeheli, 2003). There are many methods and examples of urban growth simulation. Aitken lists the three main categories of model computations as Fractal, Agent-Based, and Cellular Automata (Aitken et al., 2003). Fractal modeling divides a region into smaller but similar regions based on a simple rule. The division occurs over and over many times to create a growing model. Agent based modeling relies on a single agent to act a certain way until some change is applied then as rules are applied the agent reacts to the change. Models can contain multiple types of agents with differing rules to simulate different scenarios. Cellular Automata models are cells that react depending on neighboring cells and the rules applied.

When referring to growth simulation though, this becomes more than just computations for modeling and steps into the realm of computational intelligence. Computational intelligence doesn't refer to computers with artificial intelligence but rather processes that run through iterations and automatically adjust variables based on iteration results, rules base decisions, and fault tolerances (Legates, Gopal, & Rogerson, 2003). Legates et al. go on to delineate the four most common methods. First is the neural network which is a non linear extension of a statistical model. A good example of this technology is discussed later with regard to electric load forecasting (Ghiassi, Zimbra, & Saidane, 2006). Second is genetic programming which simulates

evolutionary process. Third is fuzzy logic which is capable of modeling nominal data and heuristic intuition. This was also indicated above in electric load forecasting (Chow, Zhu, & Tram, 1998). The fourth and most common approach to growth simulation is cellular automata (CA). This approach uses a regular grid and assigns classification to each cell. The cells then change their classification based on neighboring cells and applied rules.

Modeling Considerations

David O'Sullivan, while reflecting on unnecessary high resolution grids for a rural area, writes about an extension to CA called CA gentrification (O'Sullivan, 2004). Rather than use regular grid cells, CA Gentrification uses located vertices that don't need to be regularly spaced but interact with each other based on proximity and applied rules. There are several considerations with urban growth modeling. First is scale as discussed (Jantz & Goetz, 2005). In this article, Jantz studies several different CA models and processes them at various scales to determine an optimum scale. The results show differing thresholds based on urban densities and do not clearly define a single optimum scale but rather show a researcher the impact of using an incorrect scale.

Growth simulation modeling is a very intensive process with a large resource demand. Among those resources is computer processing demands. There have been studies dedicated to determining the best method for minimizing computational requirements and determining the proper hardware required for such simulations. One such study appears in Geoinformatica (Dietzel & Clarke, 2006b). One recommendation put forth by this study is the need for researchers to publish the open source code so that others may be able to refine processes and gain usability as computer developments evolve. This ensures the original processes to be a valid source of knowledge into the future.

Arguably the most important consideration with urban growth simulation is the calibration process. This is mentioned in almost every article about the subject(Dietzel & Clarke, 2006a; Dietzel & Clarke, 2006b; Herold, Goldstein, & Clarke, 2003; Legates et al., 2003; O'Sullivan, 2004; OĞUZ, 2004). This is the process of setting some base

parameters and running the calibration programs. Each time the programs are run, they apply multiple iterations and record results. The results are then used to determine the variables applied to the rules that govern the simulation.

One other consideration of urban growth simulation that is not as prominently documented is that of policy. Policies and plans such as zoning are difficult to apply to simulation models but many of these decisions are derived from them. Large multiagency collaborations have utilized these simulation models (Margerum, 2005; White, Straatman, & Engelen, 2004) and set policy based on the predictions. The difficulty with these collaborations is the documentation of the plans set forth and the use of those plans in future simulations. If they are not clear, they are not likely to be followed (Margerum, 2005).

This raises questions about whether existing models need to be amended for metropolitan settings to better address complex institutions and large numbers of decision-makers. Several studies have demonstrated the difficulty of collaboration at the metropolitan scale, and these issues would benefit from additional cross-case comparisons.(Margerum, 2005)

Specific Urban Growth Models

There are many specific models for urban growth simulation. These are listed in a doctoral thesis out of Texas A&M University and includes Christaller's central place theory, Alonso and Muth's land-use transition model, and Batty's diffusion limited aggregation (DLA) model (OĞUZ, 2004). For the IREA SELF project, the focus is on CA models. Roger White is considered the pioneer of CA model use for urban growth simulation (OĞUZ, 2004). Some of the CA models discussed in a writing by White include the LeefOmgevingsVerkenner (LOV) and BabyLOV which were used in a collaborative VISION project for the European Union (White et al., 2004). These models take into consideration the global supply and demand factors for a larger regional study. Dr. Keith Clarke is also at the forefront of CA use for urban simulation as noted on the Project Gigalopolis Website (Candau, 2007a). His Urban Growth Model (UGM) developed at the University Of California Santa Barbara Geography Department

(UCSB) has been adopted and combined with Land Cover Deltatron (LCD) by the USGS. The combined efforts of the USGS and the UCSB department of Geography have made this a publicly downloadable program coined SLEUTH. This is an acronym for the components required to run the program namely Slope, Land use, Exclusion, Urban extent, Transportation, and Hillshade (OĞUZ, 2004). The SLEUTH model processes simulated growth and compares that simulation to actual data from control years. Based on results, coefficients are derived that allow growth simulation into the future. The optional part of the program is land cover change analysis. The SLEUTH model has proven to be successful both on the local and regional scales (Herold et al., 2003; Jantz & Goetz, 2005; OĞUZ, 2004) and is an appropriate approach for the IREA SELF project.

Spatial Electric Load Forecasting

Electric load forecasting is important to distribution companies and their planning efforts. This forecasting allows distribution planners to protect, maintain, and add facilities based on the amount of load required. In addition to load requirements, the geographic distribution of the load is also required for planners (Chow et al., 1998). Spatial electric load forecasting has been attempted for decades.

Three large projects are considered the milestones in load growth applications and are listed by Lee Willis in a short publication simply titled 'Spatial Load Forecasting' (Willis, Engel, & Buri, 1995). In the 1960's, Arizona Public Service performed load growth analysis using land use information and bell curve showing concentric dispersion from the city focal point of downtown Phoenix. Through the 1970's, Westinghouse created two programs that were utilized by several utilities. These programs predicted load growth using polynomial trend curves and multi-variate regression. While these programs were fast, they had some accuracy issues and they lacked any strong geographic component. Houston Light and Power (HL&P) was experimenting with different methods at the same time that Westinghouse was developing their programs. HL&P settled on a land use grid method. They added multi-dimensional pattern recognition to analyze constraints. This method is the basis for most load growth simulations today.

There are other methods such as dynamic neural networks mentioned in an article published in the 'Electric Power Systems Research Journal' (Ghiassi et al., The method evidenced in this writing also applied weather and seasonal variables with a very high degree of accuracy but it did not contain a geographic component. Other load forecasting methods include trend analysis with an attempt to overcome the day-to-day changes of the electric network (Willis, Tram, & Rackliffe, In this article, Lee Willis removes the network switching configuration by coupling feeders that have been switched and grouping feeders of similar type and location together. An interesting step in this example was to set a horizon limit to the load growth at a specified time frame. This helped improve the accuracy of the trend analysis even though the horizon estimate was not accurate. Fuzzy logic is another method for predicting spatial load forecasting. Applying multi-objective decision rules to fuzzy models allows for more accuracy as shown in an article published in the 'IEEE Transaction on Power Systems' journal (Chow et al., 1998). This method is comprised of memberships, rules that govern interaction between memberships, and multiobjective decisions that constrain and direct the rules governing membership relations.

A paper written by Jessica (Noonan) Valenti and presented at the 2006 Electric and Gas Users Group meeting lists three main components that feed into spatial electric load forecasting models used today (Noonan). First is the historical load data. This is usually a compilation of substation meter data and customer usage. Second is a load classification schema. This refers to the type of customer and their usage such as industrial, light commercial and residential. Third is land use information. Most of the spatial load forecasting models are grid based to a resolution of quarter sections or approximately 2600 feet x 2600 feet. One problem posed in another paper by Lee Willis (Willis, Finley, & Buri, 1995)is that this resolution in rural areas where a customer base is very sparse might cause models to infer more growth than is likely. To improve accuracy, Willis suggests using road frontage versus property area to determine development probabilities. In any case, the key feature to successful spatial load forecasting is land use information.

Land-use simulation is the only realistic choice for longrange distribution planning studies, where accuracy and multi-scenario planning capability are necessary. (Willis, Finley et al., 1995)

Project Scope

The scope of the IREA SELF project focuses on the geographic area that IREA services. Portability is an important component of the project so consideration has been given to allow for other geographic regions to be applied. Precision is another scope consideration. While remaining open ended for portability purposes, the SELF project focuses on the scale and precision required by IREA.

Spatial

The IREA territory covers portions of 10 different counties adjacent to the Denver Metropolitan area. Reference the territory maps in Appendix A. The territory can be generally described as areas to the East, South and West of Denver. The counties served are Adams, Arapahoe, Douglas, Elbert, El Paso, Teller, Fremont, Park, Jefferson, and Clear Creek. There are four operating districts for IREA. They include the Strasburg District, Conifer District, Woodland Park District and Sedalia District. The Strasburg district serves the currently rural portions of Adams and Arapahoe counties. The Sedalia district serves Douglas and westerly portions of Elbert counties. The Woodland Park district serves small portions of Fremont and El Paso counties. That district also serves Teller County and the part of Park County known as South Park. The Conifer District serves a small portion of Clear Creek County, the mountainous portions of Jefferson County and the eastern portions of Park County.

Due to the geography of the Colorado Front Range, IREA has two distinct geographic regions within the service territory. The Mountains region is serviced by the Conifer and Woodland Park operating districts while the Plains region is served by the Sedalia and Strasburg operating districts. The two distinct regions also share different service attributes with the plains region being more urban based with high service density and the mountains region being more rural based with more sparse service density. Fortunately, there is a good correlation between the service boundaries, served counties and geographic regions. Of the counties served, Jefferson County is

the only one that participates in both mountain and plains geography but IREA does not serve the plains portion of Jefferson County. The good boundary line correlations are beneficial for data compilation as well as growth model calibration.

This project phase focuses on Douglas County. Douglas County contains both extremes of the population density within the IREA service territory. While Douglas County is considered a plains region in the service territory, the county does include some mountainous areas. Because of the variety of population density and terrain, Douglas County serves as good pilot region for the SELF project.

Precision

As mentioned above, the average substation occupies about 5 acres of land. For that reason, the urban growth simulation uses raster data with a pixel size of 150 meters by 150 meters. Source data was collected at a 10 meter by 10 meter resolution for raster data and vector data was rasterized to the same resolution. Once collected, the source data was aggregated to the 150 meter by 150 meter resolution for the working data.

Chapter 2 – SELF Project Urban Growth Simulation Process

Project Data-Urban Growth Simulation Phase

The data for the IREA SELF project is in the UTM Zone 13 North projection utilizing Meter units.

The IREA SELF project involves 2 phases requiring data. The first phase for urban growth simulation requires several raster data sets. The second phase for load classification also requires a raster data set. It is required that all data sets are in the same resolution, same projection and cover the same extents with the same origin.

Since it is the intent of the SELF project to closely approximate the SLEUTH urban growth model for the urban growth simulation phase, the requirements for the corresponding data were derived from those delineated on the Project Gigalopolis website (Candau, 2007a). In the SLEUTH urban growth model, the datasets are Slope, Land Cover, Exclusion, Urban Extent, Transportation and Hillshade. For the SELF project, the Urban Growth Simulator is written so that the Urban Extent and Land Cover data are classified with the same code values. Land cover data is not used in the simulator but used to create the working datasets within the simulator. For these two reasons, the data for the Urban Growth Simulator program can be run with Slope, Exclusion, Urban Extent, and Transportation datasets. Examples of these data sets can be seen in Figure 1. Actual images of the data sets can be seen in Appendix B.

Slope

The slope data required for the SELF project is a raster data set derived from digital elevation models (DEM). DEM data can be downloaded from the USGS National Map website (United States Geological Survey, 2007). This data set was projected to UTM Zone 13 North NAD 1983 coordinate system. The DEM data is then converted to slope data using the slope analysis tools in ArcGIS. The output was set to Percent versus Degree. The source DEM and slope data produced are in a 10 meter by 10 meter resolution. For the project, the slope data needed to be aggregated to a 150 meter by 150 meter resolution using the average slope value for the larger cell size.

The resultant raster file is in the ESRI Grid format containing continuous data. The data are 32bit floating point precision.

Land Use / Urban Extent

The land use data acquired for the SELF project was a raster data set created by the U.S. Environmental Protection Agency (EPA). It is derived from vector digitized and remotely sensed digitization of distinct land use classes. The raster dataset is classified by various land uses such as urban, forested, and agriculture lands. This data is downloadable from the US EPA website for National Land Cover Data (United State Environmental Protection Agency). The data was classified according to the 2001 NLCD classification scheme also found on the EPA website. In effect, Urban would be any value between and including 21 through 29. Other values indicate other types of land cover. There were a couple problems with this data. First is availability. Currently, the NLCD data is only available for 1990 and 2001. The Urban Growth Simulator program requires at least three control year datasets to derive a statistical solution. This means that the NLCD data would need to be interpolated to create a third dataset. This would still result in only an 11 year data span limiting the historical range to analyze. Second is the data consistency. Both NLCD datasets were compiled using different standards and different source information. The inconsistent lineage results in differences in the data that may affect growth calibration. As flexibility is one of the requirements for the SELF project, the NLCD data can be used and will provide a solution but a different approach was used to create land use data for the SELF project. A highly detailed data source that is available from most county governments is the parcel data maintained by the assessor's department. A common field in this data is the year that a structure was built on the parcel. Raster files can be created from selected parcels that have a given year built value or older. This can be repeated by adding more years to the selection set and building another raster dataset. For the SELF project, the seed year was 1980 and control files were made for 5 year intervals through 2005.

The source land cover data is a raster dataset derived from Douglas County Parcel data. The raster datasets are in a 10 meter by 10 meter resolution. The

resultant datasets from the parcels was classified to urban and not urban coded values. Urban cells were coded with a value of 23 but could have been any integer value ranging from 21 to 24, non-urban were coded to a value of 1 but could be any other integer value greater than 0 and less than 100 that doesn't fall within the urban range, and the no data value was set to 0. For the project, the land cover data needs to be aggregated to a 150 meter by 150 meter resolution using the maximum land cover value for the larger cell size. This means that if a 10 meter cell centroid was in a parcel with a year built value it received an urban status and upon aggregation, if a 150 meter cell contained any urban it was set to urban. The resultant raster file is in the ESRI Grid format containing continuous data. The data are unsigned 8 bit integer precision. The tabled values are 23 for urban, 1 for non-urban and 0 for no data. There are several raster files in this data set. One for the seed year and the rest for control years used in the calibration processes.

Exclusion

The exclusion data set is also a raster data set. This data are derived from vector digitized data. These data delineate areas resistant to urbanization. The values range from 1 to 100 and a no data value of 0. Any value over 100 is considered 100. An excluded area with a value of 100 is completely resistant to change such as bodies of water whereas areas with values of 1 are not resistant to change. An unclassified wetland may be classified a 30 whereas a dedicated open space may be classified an 80.

For the SELF project, the sources of this data were Colorado Department of Transportation's Federal Lands shape file, Douglas County's Water Bodies shape file, and Douglas County's Open Spaces shape file. Raster data sets were created for each shape file with a value of 100 within the boundaries in the shape files, a value of 1 for areas outside the boundaries, and a value of 0 for no data. The resulting raster datasets were then combined using map algebra and adding the values together. The resulting raster dataset was then classified with any value 100 or greater becoming 100, any value greater than 0 and less than 100 becoming a 1, and all no data values

becoming a 0. This data is also in the ESRI Grid format containing continuous data. The data are unsigned 8 bit integer precision.

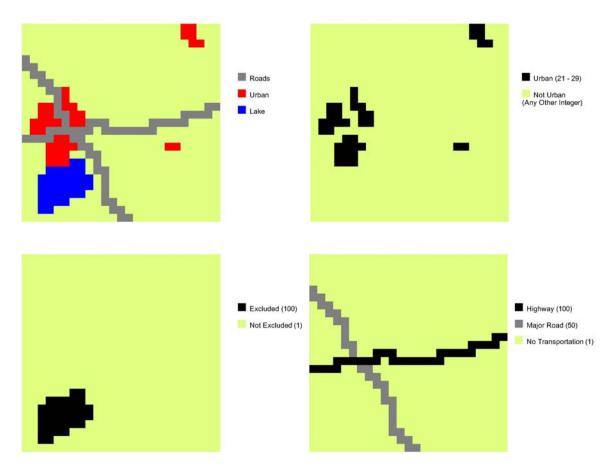


Figure 1 – Dataset examples from top left clockwise; Existing land cover, Urban extent, Transportation, and Exclusion

Transportation

Transportation data are vector data converted to raster that include road information. The pixels have values representing the weighted value of a road, such as 100 for a highway and 10 for a residential road. Transportation is a key component of urban growth so it is prudent to include as much transportation information as possible.

For the SELF project, the source for transportation data was the Colorado Department of Transportation. They maintain several different road shape files, each containing a different class of road. In these shape files, there is field that indicates when the road was built. Even though this data was not consistent, the majority of the data had a posted year built value and was suitable to create historical road datasets.

In the SELF project, it was assumed that urban growth was only influenced by highways and major roads. Residential roads were only present when urban development had already occurred yet major roads and highways often traverse ground available for development. Two shape files from the Department of Transportation were converted to raster datasets. The two raster datasets are then added together with map algebra and then reclassified. If the two datasets had overlapping values, the higher value was saved. The values in the resulting raster dataset are 100 for highways, 50 for major roads, 1 for non transportation and 0 for no data. There were multiple datasets made for the control transportation years. All transportation datasets are in the ESRI Grid Format containing continuous data. The data are unsigned 8 bit integer precision.

Hillshade

The hillshade data are DEM data used as a backdrop for the resultant data to provide spatial reference. The source for these data is the same as the slope data and will be processed with hillshade techniques common to GIS.

Urban Growth Simulation Methods

The SELF Urban Growth Simulator closely assimilates the SLEUTH model methods. The SLEUTH model makes the assumption that future urban growth can be predicted based on and mimicking historical urban growth patterns for the region being studied. The SLEUTH model uses cellular automata to analyze and predict the probabilities that a cell will become urban. Cellular automata use neighboring cells and rules to determine the probabilities that a focus cell will change. In the case of the SLEUTH model, there are multiple layers of grids and the neighboring cells of each layer are analyzed for the same focus cell location in each layer. To predict urban growth, the SLEUTH model first needs to be calibrated. This is an iterative process of trying many variables and analyzing the results to determine which variables create the best fit to known historical data. The SELF Urban Growth Simulator follows much of the same methods as the SLEUTH model.

Calibration Coefficients

The SELF Urban Growth Simulator uses five variables or coefficients in determining growth patterns. The ranges for each of these variables are 1 through 100. The first coefficient is *Dispersion*. This coefficient determines the propensity of spontaneous urban growth throughout the study area. The second coefficient is *Breed*. This coefficient determines if the newly urbanized cells from the spontaneous growth will become urban growth centers or not. The third coefficient is *Spread*. This coefficient is determines how much an existing urban center will spread outward from the center. This is also known as edge growth. The fourth coefficient is *Slope*. This coefficient is a factor in how resistant urban growth is at certain slope values throughout the growth cycles. This is factored in for every cells determination of being available for urbanization or not. The fifth coefficient is *Road Gravity*. This coefficient determines the probability that urban growth will be drawn towards transportations routes.

Calibration Rules

There are four rules in the SELF urban growth simulator. Each rule is applied for each growth cycle which represents 1 year of growth in the model. The Urban Growth Simulator needs to know which cells are grown by which rule so each rule will create cells with different coded values depending on the type of growth that occurred. For instance, Spontaneous growth cells will have a value of 26, Breed growth cells will have a value of 27, Spread growth cells will have a value of 28 and Road Gravity growth cells will have a value of 29. At the end of each growth cycle, statistics are gathered and all new growth for that cycle will be recoded with a value of 25.

The first rule is the <u>Spontaneous Growth</u> rule. This rule randomly selects cells across the raster. If the selected cell is available for urbanization then the simulator will make that cell urban. The dispersion coefficient is used in this rule of growth. This value determines how many cells will be selected for urbanization in a growth cycle but is limited to no more than 50% of the image diagonal if the dispersion value were set to 100.

```
dispersionvalue = (dispersion * 0.005) * √rasterwidth² + rasterheight²
do until dispersionvalue
select cell @ random column, random row
if cell can be urban
urbanize cell
endif
loop
```

Figure 2 – Pseudo Code for Spontaneous Growth

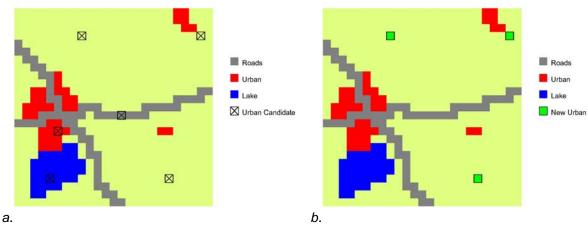


Figure 3 – Spontaneous Growth; a. Randomly select cells b. Urbanize if possible

The second rule is the <u>Breed Growth</u> rule. This rule selects new cells from spontaneous growth within the current growth cycle and randomly decides whether or not the cells will become new spreading urban centers. The randomness in this growth rule is weighted by the breed coefficient. A random number is generated between 1 and 100. If that number is less that the breed coefficient, then two random neighbors of the spontaneous growth cell will become urban.

if random(1,100) < breed coefficient search neighbors if at least two neighbors available urbanize two at random

Figure 4 – Pseudo Code for Breed Growth

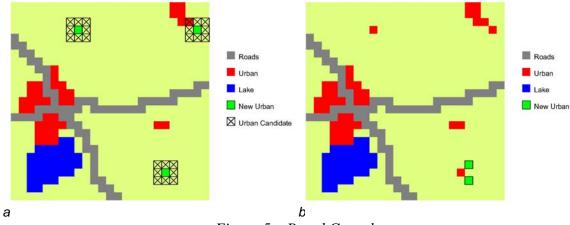


Figure 5 – Breed Growth; a. Select spontaneous growth cells b. Randomly urbanize two neighbors

The third growth rule is <u>Spread Growth</u>. This growth rule determines the amount of urban growth along urban cluster edges. In the SLEUTH model this is also known as Edge Growth. The spread coefficient is used in the spread growth to weight the randomness of urbanizing a neighbor of an urban cell along the edges of urban clusters. The raster data set is scanned for urban cells. When an urban cell is found, a random number is generated between 1 and 100 and if that number is less that the spread coefficient, it is selected for spread growth. If the cell is selected for spread growth, its neighbors are searched. If there are at least 2 urban neighbors and less than 8 urban neighbors, then one of the non-urban neighbors will be urbanized.

if cell is urban
if random(1,100) < spread coefficient
search neighbors
if 2 < urban neighbors
if 2 < available neighbors > 8
urbanize 1 available neighbor

Figure 6 – Pseudo Code for Spread Growth

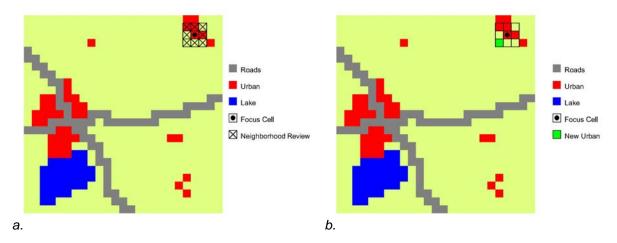


Figure 7 – Spread Growth; a. Search neighbors of urban cell for 1-7 urban cells then search for 1-7 available cells b. Randomly urbanize one available neighbor

The fourth growth rule is *Road Gravity Growth*. This growth rule determines how much transportation influences urban growth. This growth rule uses the road gravity coefficient, the dispersion coefficient and the breed coefficient. The raster dataset is scanned to find urban cells. Once an urban cell is found, a random number between 1 and 100 is generated and, if less than the breed coefficient, then the cell is promoted to the road search processes. The road gravity coefficient is used to generate a road gravity value. This value is a percentage of 1/16 of the image size. That is to say if the road gravity coefficient is 100, the road gravity value would be 1/16 the image size. Using this road gravity value, neighborhoods of increasing size are searched for transportation cells. Once a transportation cell is found, then the road is walked a distance that is a factor of the road type found, the road gravity coefficient, and the dispersion coefficient. At the end of the walk, the neighborhood is searched for a cell to urbanize. If there is a new cell urbanized, then its neighbors are searched to urbanize two more cells.

```
road gravity value = (road gravity coefficient / 100)*((raster width* raster height) / 16)
if cell is urban
if random(1,100) < breed coefficient
search increasing neighborhoods (i.e. 3×3 then 5×5 then 7×7 and so on)
if transportation found
walk distance = (transportation cell value / road gravity coefficient) * dispersion coefficient
travel the walk distance along road
urbanize 1 available neighbor
if urbanized
urbanized 2 neighbors of the new urbanized cell
```

Figure 8 – Pseudo Code for Road Gravity Growth

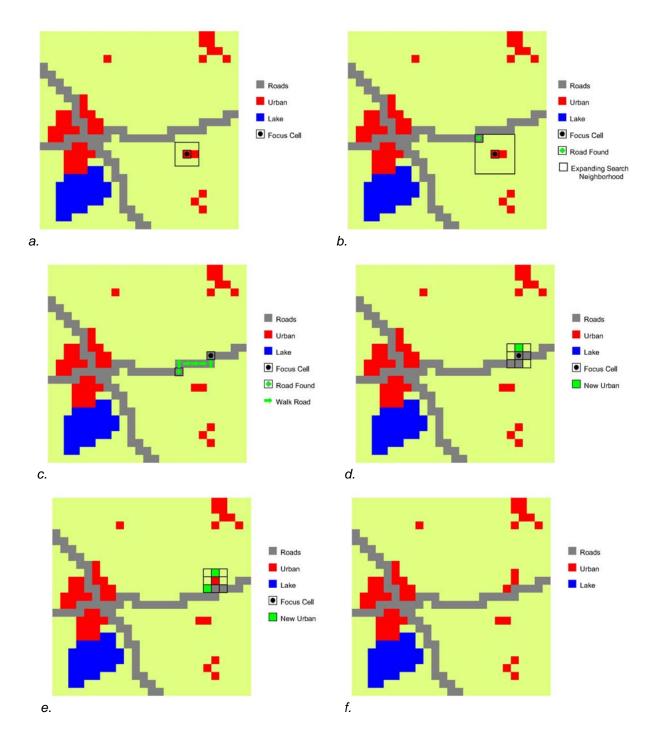


Figure 9 – Road Gravity Growth;
a. Locate urban cell and search neighborhood for road
b. Search increasing neighborhood sizes for road
c. Walk along the found road
d. Urbanize a neighbor at the end of the walk
e. Urbanize two neighbors of the newly urbanized cell
f. End of growth cycle land cover after all growth rules are applied

There is no specific rule that uses <u>Slope</u> directly. Slope rather is a factor of the availability for a cell to urbanize that is applied in all rules when determining if a cell can be urbanized. Slope is a factor that affects urbanization in a variable manner. First, there is a maximum slope that can be built upon. The maximum slope for the Urban Growth Simulator is set to 21% but can be easily modified by changing the code in the "CanUrban" function. Second, as more land is available to urbanize, less steep slopes will develop first. As less land is available, steeper slopes will be developed. This is modeled by finding a value that is equivalent to the difference between the critical slope and the cell's slope value. This difference is then divided by the maximum slope and then raised to the power of the slope coefficient divided by 50, half of the highest slope coefficient possible. The resulting value is then compared to a randomly generated number between 0 and 1 and if lower than the random number, the cell can be urbanized.

Slope Exponent = Slope Coefficient / 50

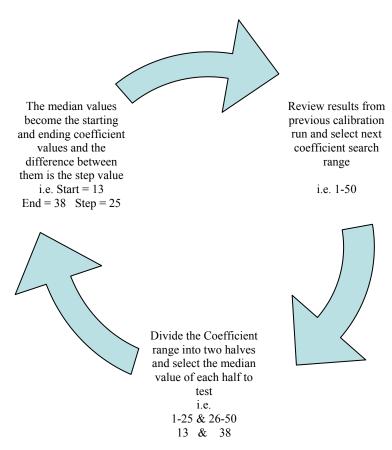
Slope Value = (21 - Focus cell slope value) / 21

Look Up Value = Slope Value^{Slope Exponent}

If Random(0, 1) > Look Up Vaalue Then

Available = False

End If


Figure 10 - Pseudo Code show how slope is used to determine a cell's ability to become urban

Calibration Process

The calibration process for any cellular automata model often requires the most work. This is the case with the SELF Urban Growth Simulator. The calibration process consists of runs, iterations and growth years. A growth year consists of one cycle of simulated growth. Iteration consists of a given number of years to grow. A run consists of a given number of iterations processed against one combination of coefficients.

To gain the best simulation from the program, the best combination of the five coefficient values needs to be discovered. The sure method for achieving this is to try each combination and review the statistics for each combination. Unfortunately, to accomplish this would require too much time as there are 100⁵ or 10 billion combinations. This means that a systematic approach is required to filter out the

majority of combinations. The SLEUTH model discusses a 'Brute Force' calibration on the Project Gigalopolis Website (Candau, 2007a). This brute force calibration discusses performing some calibration steps at a reduced resolution of data. It was determined by Candau though that the SLEUTH model could not accept a reduced resolution dataset as that greatly influenced the results specifically in the spread growth (Candau, 2007b). The other difficulty with the brute force calibration is that it searches an increasing number of coefficient combinations as it progresses through the calibration process. The brute force calibration is often run on multiple machines, as many as a dozen or two, to complete the process in a timely manner (Candau, 2007b). Based on the scalability requirements of the SELF project and that an electric utility is not likely to have a bank of machines waiting to process growth simulations, the brute force methods would not work for the SELF project.

Figure 11 – Cycle of Coefficient Determination;

For the SELF project, a method of searching the coefficient ranges was developed. This method can be termed 'High-Low' calibration. Using this method (Figure 11), a range of numbers is searched by picking a start value that is approximately the median of the lower half of the search range and an end value that is the median of the upper half of the search range. The step would be the difference between the two. For example, to search a range from 1 to 100, the start value would be 25, the end value would be 75 and the step value would be 50. Once the calibration runs are complete, the statistics are reviewed and a smaller search range is selected. For instance, if the previous example showed better statistics for values of 75, then the search range would become 51 to 100, the start value would be 63, the end value would be 88 and the step value would be 25. This progresses to smaller and smaller search ranges and step values until the final coefficient is determined. The idea of this method is to minimize the number of step values for a calibration run. This process will require many more calibration runs but the time to finish each will be exponentially shorter. For example, a calibration that has two steps for each coefficient requires 32 or 25 coefficient combinations and will take slightly more than a day to process. A calibration run that has four steps for each coefficient will require 1024 or 45 coefficient combinations and about a month to run. Figure 12 is a guide to search ranges and step values.

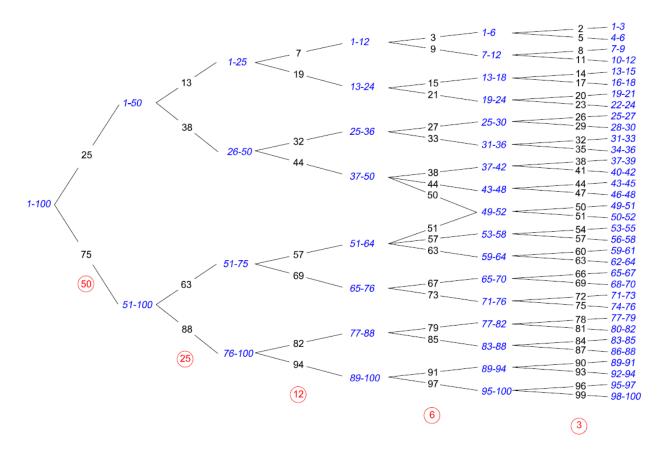


Figure 12 – High-Low Coefficient Determination; The blue italicized numbers are the search ranges.

The black numbers along the lines are the start and end values for the search range to the left. The red circle numbers are the step values for the start and end values in that level of the tree.

Searching large ranges of coefficient values does not require a large number of iterations. The goal is to just determine the high or low portion of the range to search further. As the search ranges and step values get smaller, the number of iterations should increase to provide a better averaging of the coefficient results. It would be good practice to use three or four iterations when searching a range of 1-100 and increase the number of iterations by one or two for each smaller range searched. When searching the smallest ranges, the number of iterations should be nine or ten.

Selecting coefficients does not have to always step to the next level of smaller ranges. If a given coefficient does not provide a good solution from a calibration run, a broader range of the same step level can be searched while the other coefficients progress to smaller search ranges. For example, if all coefficients were searching ranges at a level where the step value is twelve and the spread coefficient doesn't

produce a good solution, the next calibration might have all coefficients searching a range with a step value of six. The spread coefficient would be searching two ranges at the level where the step value is twelve. This will increase the number of coefficient combinations to be searched but not exponentially.

Once final values are determined for the five coefficients, the SELF Urban Growth Simulator needs to run the self modification process. This process runs a given number of years for 100 iterations. Each iteration starts with the final coefficients from the previous calibration process. As the self modification process runs, the coefficient values are modified depending on the amount of urbanization in a growth cycle. If the amount of urbanization in a given cycle is more than a maximum growth level set by the user, the coefficient values will increase by one tenth. If the amount of urbanization in a given cycle falls below a minimum growth level set by the user, the coefficient values will decrease by one tenth. In effect, this causes the model to react to boom or bust scenarios that develop causing a fluctuating growth pattern and eliminating linear effects of static coefficients. The final coefficient values are recorded after each iteration and then averaged across all iterations to produce a new set of seed coefficients to be used in the growth simulation.

Urban Growth Simulation Interface

The SELF Urban Growth Simulator required a user interface. This was provided with Visual Basic. The interface allows entry of seed data files, coefficients, processing modes, control data and results output options. These settings can all be set from one form that is organized with tabbed panels. Below the tabbed panels is the area where processing modes and timeframes are configured.



Figure 13 - Seed Files Panel

The first panel, pictured in Figure 13, is used to enter the seed files for both calibration and growth simulations. The file location for each data set must be entered on this panel. The ellipses (...) button opens the ArcObjects data dialog box that is filtering for raster data sets. Help for each dataset can be retrieved with the "About" buttons. The seed year is the year at which calibration and growth simulation starts. This year will be the first growth cycle so entering the year 1980 would mean that the growth starts on January 1st of 1980. That is, if you set the seed year to 1980 and you want the growth cycle to include growth for 1990, there would be 11 cycles to include growth all the way through December of 1990.

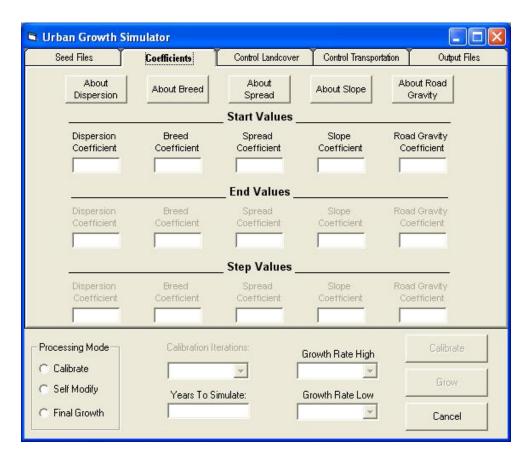


Figure 14 - Coefficients Panel

The second panel, pictured in Figure 14, is used to enter the coefficients. Across the top of the panel are help buttons that explain the different coefficients. The top row of entry boxes is for the starting coefficient values. Depending on the processing mode, the second and third rows of coefficient entry boxes may be enabled. The second row of entry boxes is for the ending or maximum value of each coefficient. The third row of entry boxes is for the step value of each coefficient. Rather than entering the number of increments, this value is the additive number for stepping through coefficient values. That is to say, if the start value was 25 and the end value was 75 and the evaluation was to include 5 values in this range, the step value would be 10. End and step values are only enabled when the simulator is in the 'Calibration' processing mode. The end

values are populated by the growth simulator with ending values at the end of the 'Self Modify' processing mode.

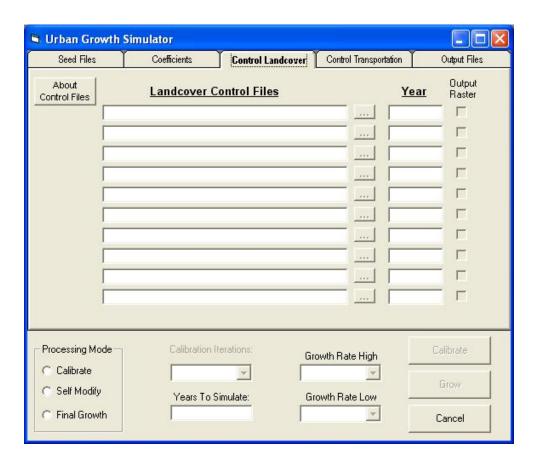


Figure 15 – Land Cover Control Panel

The third panel, pictured in Figure 15, is used to enter the control data for land cover / urban extent. The controls on this panel are only enabled in the 'Calibration' processing mode. The entry boxes and ellipses buttons operate the same as on the first panel. The entry boxes to the right of the ellipses button are for the year. Like the seed year entry box on the first panel, these year entry boxes are considered the first of the year. The output check boxes indicate whether or not raster files are generated after the control year growth cycle has been completed. This option is available to allow visual analysis but is not required for calibration to complete. Checking the boxes causes the Urban Growth Simulator to utilize ArcObjects to write out raster files and adds time to the calibration process.

The fourth panel, pictured in Figure 16, is used to enter the transportation control files. This panel operates the same as the third panel. Like the third panel, the year boxes indicate the first of the year so the transportation control files will be loaded into memory prior to running that year's growth cycle.

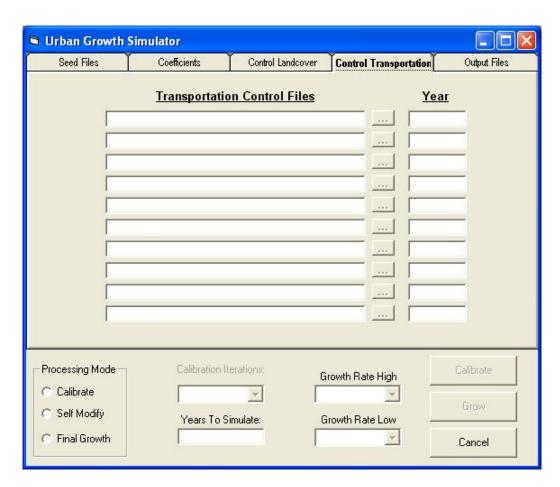


Figure 16 – Transportation Control Panel

The fifth panel, pictured in Figure 17, is used to select directories for raster file output and statistics logs. The entry boxes on this panel are looking for directories as opposed to files in the other panels. The ellipses buttons will open the ArcObjects data dialog with the filter set to directories. Even if no output files are configured, both directory entry boxes must be completed. There is no requirement that these directories be different and in fact can be the same directory. Project organization would be better if these were separate directories though. The raster files that are output are ESRI grid files and contain their own directory structure which may get

cluttered if combined with the statistics files. At the bottom of this panel is a help button that explains miscellaneous information and best practices.

The lower portion of the form contains the controls that set the processing modes and study timeframes. The three modes that the program runs in are 'Calibration', Self Modify' and 'Final Growth'. If the program is set to 'Calibration' mode, the user must specify the number of iterations and the number of years to simulate. In the 'Self Modify' processing mode, the iterations are automatically set to 100 but the user must specify the number of years to simulate. In addition, the user must also select the upper growth limits and lower growth limits which will control the boom and bust scenarios and cause coefficient modification. In the 'Final Growth' processing mode, there are no iterations but the user must specify the number of years to simulate. The Calibrate button is used to start the 'Calibration' and 'Self Modify' processing mode simulations. The Grow button is used to start the 'Final Growth' processing mode.

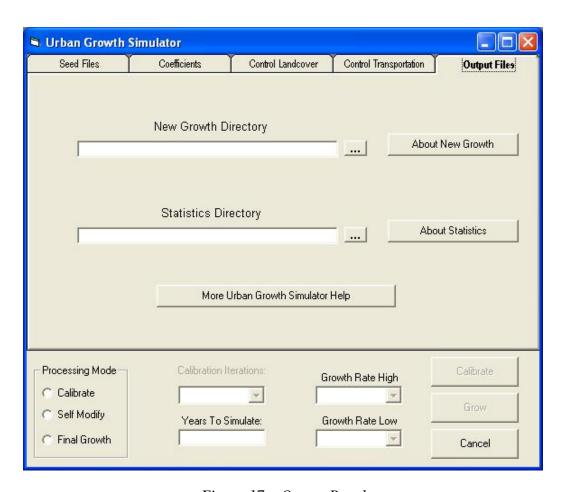


Figure 17 – Output Panel

Urban Growth Simulation Output

The SELF Urban Growth Simulator program outputs raster data as well as statistical data about the simulations. The program interface has options that allow the output raster data to be generated or suppressed. This is used to manage processing time during the calibration process. Raster data output is not required for the calibration process to reach a solution but may be desirable to verify reasonableness of the statistical solutions. All other output is required by the program. See Figure 18 for the program process flow.

Raster Data

The raster data files are essentially copies of the seed Land Cover / Urban Extent raster data. Examples can be seen in Appendix C. The only difference between the seed and output raster data are that there will be several cells that have a value of 25 representing new growth. The program interface allows the user the option to output the raster data for each land cover control file year. These files will be output each time the selected control file year is reached. This includes each iteration as well as each coefficient set run. The files are automatically named as to which run, iteration and year generated the data and are saved in ESRI Grid format. For example, a file name of r3_i6_y1995 would be the output raster for the 3rd iteration of the 1995 growth cycle using the 3rd set of coefficients. If a control file year is selected to be output, there will be a raster file for that growth cycle for all iterations and runs. The output raster file is created by copying the seed raster file and then for each newly grown cell from all growth cycles, those cells with a value of 25, are assigned to the copied raster file.

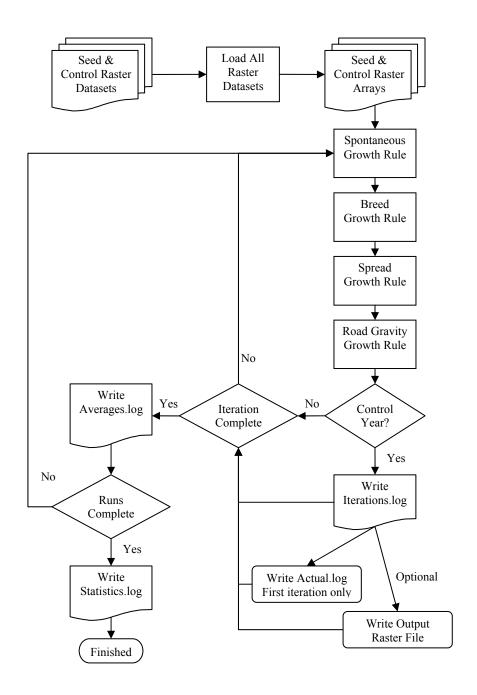


Figure 18 – Calibration Process Program Flow

Statistical Logs

The SELF urban Growth Simulator generates 5 log files used for statistical analysis. Examples can be seen in Appendix D. All of the files except the "Errors.log" file have the same column headings but may not have data in all of the columns.

Each column contains either the growth cycle information, the coefficients for the run, or the statistical metrics.

Iterations.log

The first file generated is the "Iterations.log" file. This file contains statistics for each growth cycle. Most of the values in this file are simple counts for the statistical metrics. Each row is one growth cycle from one iteration from one coefficient set run. There will be a row for each control growth cycle processed.

Actuals.log

The second file generated is the 'Actuals.log" file. This file is identical to the iterations.log file except that is contains the statistical metric counts for the control year raster data. Therefore, all columns related to growth cycles and coefficients will be empty.

Averages.log

The third file generated is the Averages.log file. This file is the average of the values in the iterations.log file for each iteration. That is, all iterations for a control year in a given coefficient set run are averaged for all statistical and growth cycle metrics.

Statistics.log

The fourth file generated is the Statistics.log file. This file contains the calculated statistics between the actuals.log file and the averages.log file. The R-square is calculated for most of the statistical metrics. Each row of this file is for one coefficient set run. This file is used to determine the best coefficient set to promote forward to the self modifying growth process.

Errors.log

An additional file that is sometimes created is the errors.log file. This file is only generated if the growth simulator encounters an error that is not reported to the user. Most errors such as coefficient entry or file selection will be presented to the user for

correction. Some errors though occur during the growth cycle processing when there is no user involvement. The most critical of these errors is a divide by 0. Normally this type of error would crash the simulator, but they are being monitored and adjustments made to values so the division can occur without error. When this occurs, there is a message written to the errors.log file as to what caused the error and what values were changed. In these cases, the processing for that growth cycle, iteration or run may need to be ignored when evaluating the statistics.

Statistical Metrics

There are several statistical metrics that are tabulated and calculated from the SELF Urban Growth Simulator. Each metric account for some geographical perspective of the simulated growth whether it is clusters of growth or latitudinal and longitudinal correlation. Each metric will be explained below in the order that they appear in the statistical log files.

Run

This is the run number for a given coefficient set. It is a sequential number assigned as each coefficient set is analyzed.

Year

This is the year represented by the current growth cycle.

Iteration (MC)

This is labeled MC in the statistical logs referring to the Monte Carlo iteration process. This is the iteration number of the current run.

Spontaneous Growth (SnG)

This metric is found in the iterations and averages log files. In the iteration log file, each row contains a count for the number of cells that were urbanized under the spontaneous growth rule. In the averages log file, this value is the average across iterations for a given run.

Breed Growth (SpG)

This metric is found in the iterations and averages log files. In the iteration log file, each row contains a count for the number of cells that were urbanized under the breed growth rule. In the averages log file, this value is the average across iterations for a given run.

Edge Growth (EdG)

This metric is found in the iterations and averages log files. In the iteration log file, each row contains a count for the number of cells that were urbanized under the edge growth rule. In the averages log file, this value is the average across iterations for a given run.

Road Gravity (RdG)

This metric is found in the iterations and averages log files. In the iteration log file, each row contains a count for the number of cells that were urbanized under the road gravity growth rule. In the averages log file, this value is the average across iterations for a given run.

Total Grown Cells (GrwPix)

This metric is found in the iterations and averages log files. In the iteration log file, each row contains a count for the total number of cells that were urbanized under all growth rules. In the averages log file, this value is the average across iterations for a given run.

Population (Pop)

Population is simply a count of all urban cells that were not existing urban cells in the seed year. In the iterations and actual log files, this is a pure count whereas in the averages log file this is an average of all iterations for a given run. In the statistics log file, this metric is the r-square value between the actual urban cells and the simulated urban cells.

Area

Area is the population value multiplied by the area of each cell. In the averages file, this is the average of all iterations for a given run rather than a calculation of the averaged population multiplied by the area of a cell. Although both values would be the same, it is important to note how the value was derived. In the statistics log file, this metric is the r-square value between the actual urban area and the simulated urban area.

Compare

Compare is a metric that only appears in the statistics log file. This metric is R-square value of simulated and actual urban cells. In the statistics file, the population, area, and compare should all have the same value as they are all based on urban cell counts.

Clusters

A cluster is defined as 3 or more urban cells within a neighborhood whether or not it was existing at seed year or newly grown after. The clusters are counted for the iterations and actual log files. The averages log file contains the average cluster count for iterations within a given coefficient set run. The statistics log file contains the clusters R-square value for actual and simulated growth.

Perimeter

The Perimeter is the total length around each and every cluster. This is measured by the cell width or height for each cell along the edge of a cluster. In the iterations and actual log files, this is the measured length whereas in the averages log file this is the average of all iterations for a given run. In the statistic log file, this is R-square of the cluster perimeters in the actual growth compared to the cluster perimeters in the simulated growth.

Cluster Size (Clst_Size)

The cluster size is the average size of clusters in the iterations and actual log files. This number is then averaged again in the averages log file and the statistics log file contains the R-square value for the actual and simulated average cluster size.

Latitude (Lat)

This metric counts the number of newly urbanized cells in each row of the raster file and then averages the value for the number of rows. This is then averaged across iterations for the averages log file. The statistics log file contains the R-square value for simulated latitude compared to the actual latitude.

Longitude (Lon)

This metric counts the number of newly urbanized cells in each column of the raster file and then averages the value for the number of columns. This is then averaged across iterations for the averages log file. The statistics log file contains the R-square value for simulated longitude compared to the actual longitude.

Slope

The slope metric is the average slope value for newly urbanized cells in the iterations and actual log files. This value is again averaged across iterations for a given coefficient set run in the averages log file. The statistics log file contains the R-square value for simulated average slope compared to the actual average slope.

% Urban

This metric is the number of newly urbanized cells divided by the total number of available cells. As with the other metrics, the averages log file contains the average % urban for all iteration in a given coefficient run and the statistics log file contains the R-square values.

Intersect (IntSect)

This metric is the count of newly urbanized cells in simulated growth that are coincident with newly urbanized cells in the control year files. The number is averaged for all iterations within a coefficient set run in the averages log file. The statistics log file contains the averaged value from the last control year in the averages log file. A formula for this would be Actual \cap Simulated.

Union

This metric is the count of newly urbanized cells in simulated growth combined with the newly urbanized cells in the control year files. The number is averaged for all iterations within a coefficient set run in the averages log file. The statistics log file contains the averaged value from the last control year in the averages log file. A formula for this would be Actual \cup Simulated.

<u>LeeSalee</u>

This metric is the measure of the spatial correlation from the coefficient set solutions. It is calculated by dividing the intersect value by the union value. A formula for this would be (Actual \cap Simulated) / (Actual \cup Simulated).

Dispersion (Diff)

This is the dispersion coefficient value for the statistical row in all log files except the actual log file.

Spread (Sprd)

This is the spread coefficient value for the statistical row in all log files except the actual log file.

Breed (Brd)

This is the breed coefficient value for the statistical row in all log files except the actual log file.

Slope Resistance (SIRs)

This is the slope coefficient value for the statistical row in all log files except the actual log file.

Road Gravity (RdGr)

This is the dispersion coefficient value for the statistical row in all log files except the actual log file.

Urban Growth Simulation Development

The SELF Urban Growth Simulator was developed using common programming language found on windows based machines. Development of the application went through a couple different variations until the final product was completed. These variations were due to processing times that were unacceptable.

ArcObjects

A key requirement for this project is compatibility with ESRI ArcGIS. For that reason, ArcObjects was utilized to read and write to the raster data input and output files. The input and output raster data is in the ESRI Grid format containing continuous data. The data values are all 8 bit unsigned integers except for the slope data set which in 32 bit floating point precision.

Specific ArcObjects interfaces that were utilized for the raster data sets were IRaster and IRasterdataset. To be able to locate and write to the raster datasets, the iGXDialog, IWorspaceFactory and IRasterWorkspace interfaces were utilized. Writing to specific raster cells utilized the IPoint, Ipnt, IPixelBlock, and IRasterEdit interfaces. Early development efforts utilized the IRawPixels interface but the code was more complicated and less timely results were received. The IRawPixels method of writing raster data was abandoned.

The early development efforts utilized ArcObjects to manipulate the raster data at all stages of the growth process. While this processing method achieved the results of input and output of growth simulated raster data, the processing times were

unacceptable. A calibration run that consisted of 128 coefficient sets would require roughly 14 months of processing raster data sets containing 100,000 cells. The code was re-architected to utilize multidimensional arrays to handle most of the growth processes. ArcObjects was used to read raster data sets into memory and to write output raster data when required. In effect, each raster dataset that is specified by the user in the entry forms is read with ArcObjects and the cell values are loaded into two dimensional arrays where the first dimension is X and the second dimension is Y. The X refers to the column number and the Y refers to the row number. This initial loading of the raster data takes between one and two hours for raster data with 100,000 cells on a standard 3 GHz Windows XP PC with 1GB of RAM. After modifying the code to utilize arrays, a calibration run that consists of 128 coefficient sets require roughly 48 hours to process.

VBA vs. Visual Basic

Due to the fact that ArcObjects were used, an object based program was required for development of the SELF Urban Growth Simulator application. testing and early development was completed using Visual Basic for Applications (VBA). This was the most convenient way to monitor changes to cells and determine the most efficient methods of changing them. VBA is integrated within ArcGIS so, when testing, results could immediately be seen by visually reviewing the raster data inside ArcMap. The core components of the growth processes were completed using VBA but were then converted to Visual Basic for the final stages of development. This was done for the sake of speed. In VBA, there is a significant amount of computing resource overhead because ArcMap needs to be running. By converting to Visual Basic, the resources for ArcMap are not required and are available to the Urban Growth Simulator . Visual Basic also allows code to be compiled for even more efficient run time. The reason for programming in Visual Basic is to build a workable application utilizing the simplest form of coding knowing that conversion to other languages such as C and .NET Studio languages will only improve the application by making use of the advanced resources

Specific Coding Challenges

Other than processing time, there were two specific challenges in writing code for the Urban Growth Simulator.

Walking the Road

The first challenge was the Road Gravity growth rule. The other growth rules required the use of a 3x3 cell neighborhood. The road gravity rule required a varying size neighborhood. The road gravity rule also required navigation along a path.

The method used to solve the varying sized neighborhood was to scan the top row, then the bottom row, then the right column, and then the left column of the neighborhood no matter the dimensions. The search for roads would start with a 3x3 neighborhood and then expand in size by 2 rows and two columns for each try such as 5x5, 7x7 and so on.

The method used to solve the traversing the road once a transportation cell was found was to use the 3x3 neighborhood cell like a compass and remember the direction last traveled. Once the code determines a direction to "walk", the cells closest to that direction are searched first for the next transportation cell. For example, if the direction of travel for the last step was northwest, the first cell of the neighborhood searched would be the upper left cell. If a transportation cell was not found then the next two cells searched would be the top (North) cell and the left (West) cell. If a transportation cell was not found, then the search moves to the upper right (Northeast) cell and the lower left (Southwest) cell. The progressing around the neighborhood continues until the last cell to search is the cell in the opposite direction of the direction of travel. This situation would indicate a dead end in the road and the program would begin to retrace the walk backward until the required number of steps has been reached. If a transportation cell was found in any of the neighborhood cells, that cell would indicate the new direction of travel and become the focus cell. For example if the transportation cell was found in the top cell of the neighborhood, the new direction of travel would be North and the top cell would become the focus cell and one step in the required steps to walk. See Figure 19 for priority of neighborhood cell search while traversing a path.

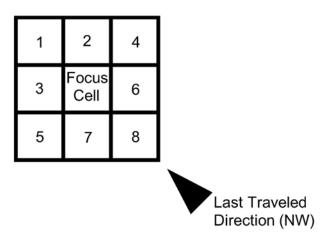


Figure 19 – Directional Priority of Neighborhood Transportation Cell Search

Counting the Clusters

The second challenge was summarizing urban clusters in the grown raster datasets. There are numerous papers that discuss methods for locating clusters of data in remote sensed imagery. Most of these methods though deal with edge detection. They use a zonal statistic or zonal filter to exaggerate and edge such as a high pass filter. The information required by the Urban Growth Simulator statistics is the number of clusters, the size of these clusters and the perimeter of these clusters. The methods mentioned in the papers work well for continuous data but the nature of cluster information in the Urban Growth Simulator is more discrete than continuous. Either it is a cluster or it isn't.

With regard to the Urban Growth Simulator, a cluster is defined as two or more adjacent urban cells. To locate clusters in the grown raster datasets, the datasets were scanned cell by cell. When an urban cell is located, the 3x3 neighborhood around the cell is reviewed for other urban cells. If found the focus cell is assigned a cluster number in an array used specifically for storing cluster values. The cluster number assigned is determined by an index that increases each time a new cluster is found. In addition, there is a cluster counter that increments for each new cluster. Because the raster dataset is scanned row by row, it is a given that a scanned urban cell will be part of a previously discovered cluster. When this occurs, the neighborhood is scanned and the focus cell will receive the highest cluster value found among the neighbors. It is

possible for more that one cluster value to be in the neighborhood. When this occurs, all cells in the raster dataset with the lower cluster values will be changed to the higher cluster value. The cluster counter will be reduced by the number of clusters combined with the higher cluster value. At the end of processing the cluster counter will reflect the number of grown clusters.

As cluster values are assigned, the total number of cells within a cluster is kept. In the case above where lower cluster valued cells receive higher cluster values, the number of cells for the lower cluster value are added to the number of cell for the higher cluster value. The number of cells for the lower cluster values is then set to 0. At the end of processing, the number of cells for all clusters is multiplied by the cell size, summed and the sums are averaged. This becomes the cluster size statistic.

Determining the cluster perimeters also occurred while scanning the raster datasets. The rule for this was if a focus cell was urban and between 2 and 7 of its neighbors were urban than the cell width was added to the cluster value perimeter. This results in a perimeter that is orthogonal in nature. For example, if the focus cell is urban and only the northwest cell is not urban than the focus cell will receive a perimeter value. The west cell has already received the perimeter value as it was the previous focus cell. The north cell will receive the perimeter value when it becomes the focus cell in the next row scan. The west, center, and north cells have received perimeter values indicating the distance across the west cell, the distance to the center of the focus cell from the west cell, the distance from the center of the focus cell to the north cell, and the distance across the north cell. See Figure 20. A running total of all perimeter values are kept and this becomes the cluster perimeter statistic.

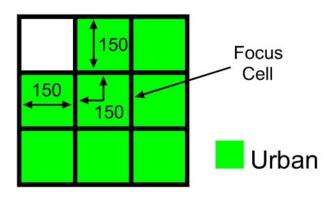


Figure 20 – Cluster Perimeter Measurment

<u>Chapter 3 – SELF Project Urban Growth Simulation Findings</u>

Results

Previous Study

The Colorado Front Range was studied with the SLEUTH model by the United States Geological Survey. This is cited on the Project Gigalopolis website (Candau, 2007a). According to the website, the final coefficients from this study were 11 for Diffusion, 41 for Spread, 35 for Breed, 1 for Slope and 91 for Road Gravity. Prior to to determine the SELF coefficients, the running the Urban Growth Simulator coefficients from the previous study were processed to determine their statistical values for the SELF project study area. The results, see Figure 21, showed a fairly low spatial correlation (LeeSalee) factor of 0.1946. This is likely due to the vast difference in extent of study area. The Colorado Front Range consists of several major urban centers in a mostly north-south straight line tucked up against the Rocky Mountains on the west and agricultural plains on the east. The Colorado Front Range is 160 miles long by roughly 50 miles wide. The SELF project area is more even in dimension being 35 miles east to west by 30 miles north to south. Proportions of slope changes, excluded areas, and transportation network between the two projects vary greatly and therefore should calibrate differently.

ſ	Run	Run Pop Area		Area Compare Clusters		Perimeter Clst_Size		Lat	Lon	Slope
	1	0.8797	0.8797	0.8797	0.7707	0.6148	0.9773	0.8726	0.8914	0.2385
Ī										
		%Urban	IntSect	Union	<u>LeeSalee</u>	Diff	Sprd	Brd	SIRs	RdGr
		0.8384	173958750	893986875	0.1946		41	35	1	91

Figure 21 – Previous Study Coefficient Results for SELF Study Area

Coefficient Determination Process

The coefficient calibration for the SELF project took nine different calibration runs and nearly three solid weeks of CPU processing time. After each calibration run, the statistics were reviewed and the next set of coefficient ranges to search were determined. There are many differing opinions on how coefficient determination is performed and which statistical metrics are most important (Candau, June 2002). For the SELF project, three different methods were utilized. This was done by importing the statistical log files into Microsoft Excel and sorting the values in various ways. An output similar to the sheet pictured in Figure 22 was completed for each calibration run.

TOP 3	LEESALEE																
Run			Compare	Clusters	Perimeter	Clst Size	Lat	Lon	Slope	%Urban	IntSect	Union	LeeSalee	Diff Spre	d Brd	SIRs	RdGr
7	0.9772	0.9772	0.9772		0.9712		0.9743		0.0061		119877188		0.2164			40	62
27	0.9795	0.9795	0.9795	0.5725	0.9793	0.9953	0.9778	0.9837	0.0058	0.9669	111192188	518675625	0.2144	4 1	9 24	42	64
21	0.9772	0.9772	0.9772	0.2166	0.9788	0.9947	0.9735	0.9817	0.0054	0.9657	115723125	540441562	0.2141			40	64
														4 21	24	40	64
	AREA		_	.													
	Pop				Perimeter		Lat	Lon	Slope	%Urban		<u>Union</u> 520050938	<u>LeeSalee</u>				RdGr
2	0.9838	0.9838	0.9838	0.5087	0.9833		0.9809	0.9876	0.0009		109082812		0.2098			40	62
18 10	0.9835 0.9835	0.9835 0.9835	0.9835 0.9835	0.6624 0.6087	0.9827 0.9832		0.9795 0.9799	0.9862 0.9864	0.0068 0.0057		110697188 111341250		0.2106 0.2103			40 42	64 62
10	0.9033	0.3033	0.9055	0.0007	0.3032	0.9959	0.3133	0.3004	0.0001	0.3121	111341230	32347 3023	0.2100	6 19		40	62
тор з	CLUSTER																
Run	Pop	Area	Compare	Clusters	Perimeter	Clst Size	Lat	Lon	Slope	%Urban	IntSect	Union	LeeSalee	Diff Spro	d Brd	SIRs	RdGr
3	0.9797	0.9797	0.9797	0.8703	0.9837	0.9942	0.976	0.9832	0.0127		109358438		0.2134			40	62
18	0.9835	0.9835	0.9835	0.6624	0.9827		0.9795	0.9862	0.0068		110697188		0.2106			40	64
17	0.9814	0.9814	0.9814	0.6501	0.9805	0.9933	0.9779	0.9855	0.0081	0.975	107460000	507597188	0.2117			40	64
TOP 2	CLUSTER I	DEDIMETER)											4 19	22	40	64
	Pop			Clusters	Perimeter	Clst Size	Lat	Lon	Slope	%Urban	IntSect	Union	LeeSalee	Diff Spre	l Brd	SIRs	RdGr
3	0.9797	0.9797	0.9797	0.8703	0.9837	0.9942	0.976	0.9832	0.0127		109358438		0.2134			40	62
2	0.9838	0.9838	0.9838	0.5087	0.9833		0.9809	0.9876	0.0009		109082812		0.2098			40	62
10	0.9835	0.9835	0.9835	0.6087	0.9832		0.9799	0.9864	0.0057		111341250		0.2103			42	62
														6 19	22	40	62
	CLUSTER																
	Pop				<u>Perimeter</u>			Lon		%Urban		Union		Diff Spro		SIRs	
29	0.9779	0.9779	0.9779	0.0846	0.9777			0.9821	0.0065	0.9657		546086250	0.2114			42	64
25	0.9809	0.9809	0.9809 0.9772	0.6116	0.9795		0.9789	0.986	0.0051		108570938 119877188	507290625	0.214			42	64
7	0.9772	0.9772	0.9772	0.2629	0.9712	0.9966	0.9743	0.9814	0.0061	0.9679	119877188	553955625	0.2164	4 2 4 21	1 24 22	40 42	62 64
TOP 3	HORIZONT	AI AI IGNM	FNT											4 21	22	42	04
	Pop			Clusters	Perimeter	Clst Size	Lat	Lon	Slope	%Urban	IntSect	Union	LeeSalee	Diff Spre	d Brd	SIRs	RdGr
2	0.9838	0.9838	0.9838	0.5087	0.9833		0.9809	0.9876	0.0009		109082812		0.2098			40	62
20	0.9828	0.9828	0.9828	0.2981	0.9785	0.9929	0.9804	0.9867	0.009	0.9707	114080625	540078750	0.2112	6 1	9 24	40	64
11	0.9804	0.9804	0.9804	0.4195	0.9818	0.994	0.9802	0.9865	0.0047	0.9757	109454062	518504062	0.2111	4 1	9 24	42	62
			_											6 19	24	40	62
	VERTICAL				B	01.4 01.				0/11-1	1			D:// 0		OID.	D 10
Run					Perimeter		Lat	Lon	Slope	%Urban	IntSect	Union 520050938	<u>LeeSalee</u>				RdGr
2 26	0.9838 0.9828	0.9838 0.9828	0.9838 0.9828	0.5087 0.2472	0.9833 0.9797	0.9943 0.9949	0.9809	0.9876 0.9871	0.0009 0.0056	0.9757	109082812 110224688		0.2098 0.2094			40 42	62 64
20	0.9828	0.9828	0.9828	0.2981	0.9785		0.9804	0.9867	0.0030		114080625		0.2094			40	64
	******	*****											*	6 19		40	64
TOP 3	SLOPE																
Run												Union					RdGr
	Pop	Area			Perimeter		Lat	Lon	Slope	%Urban	IntSect		LeeSalee				
- 8	Pop 0.9796	0.9796	0.9796	0.2106	0.9694	0.9961	0.976	0.9842	0.0228	0.9704	121348125	571530938	0.2123	6 2	1 24	40	62
1	Pop 0.9796 0.9797	0.9796 0.9797	0.9796 0.9797	0.2106 0.6338	0.9694 0.9793	0.9961 0.9945	0.976 0.9771	0.9842 0.9851	0.0228 0.0154	0.9704 0.9713	121348125 108149062	571530938 505822500	0.2123 0.2138	6 2	1 24 9 22	40 40	62 62
	Pop 0.9796	0.9796	0.9796	0.2106	0.9694	0.9961	0.976	0.9842	0.0228	0.9704 0.9713	121348125	571530938 505822500	0.2123	6 2 4 1 4 1	1 24 9 22 9 24	40 40 40	62 62 62
1 3	Pop 0.9796 0.9797 0.9797	0.9796 0.9797	0.9796 0.9797	0.2106 0.6338	0.9694 0.9793	0.9961 0.9945	0.976 0.9771	0.9842 0.9851	0.0228 0.0154	0.9704 0.9713	121348125 108149062	571530938 505822500	0.2123 0.2138	6 2	1 24 9 22 9 24	40 40	62 62
1 3 TOP 3	Pop 0.9796 0.9797 0.9797	0.9796 0.9797 0.9797	0.9796 0.9797 0.9797	0.2106 0.6338 0.8703	0.9694 0.9793 0.9837	0.9961 0.9945 0.9942	0.976 0.9771 0.976	0.9842 0.9851 0.9832	0.0228 0.0154 0.0127	0.9704 0.9713 0.9703	121348125 108149062 109358438	571530938 505822500	0.2123 0.2138 0.2134	6 2 4 1 4 1 4 19	1 24 9 22 9 24 24	40 40 40 40	62 62 62 62
1 3	Pop 0.9796 0.9797 0.9797	0.9796 0.9797	0.9796 0.9797 0.9797	0.2106 0.6338 0.8703	0.9694 0.9793	0.9961 0.9945 0.9942	0.976 0.9771	0.9842 0.9851	0.0228 0.0154	0.9704 0.9713	121348125 108149062	571530938 505822500 512370000	0.2123 0.2138	6 2 4 1 4 1 4 1 1 9 Diff Spro	1 24 9 22 9 24 24 24 Brd	40 40 40 40	62 62 62
1 3 TOP 3 <u>Run</u>	Pop 0.9796 0.9797 0.9797 % URBAN Pop	0.9796 0.9797 0.9797	0.9796 0.9797 0.9797	0.2106 0.6338 0.8703	0.9694 0.9793 0.9837	0.9961 0.9945 0.9942 Clst_Size 0.9941	0.976 0.9771 0.976	0.9842 0.9851 0.9832	0.0228 0.0154 0.0127 Slope	0.9704 0.9713 0.9703 %Urban 0.9763	121348125 108149062 109358438 IntSect	571530938 505822500 512370000 <u>Union</u> 533908125	0.2123 0.2138 0.2134 LeeSalee	6 2 4 1 4 1 1 4 1 1 9 Diff Spro 6 1	1 24 9 22 9 24 24 24 b Brd 9 24	40 40 40 40 SIRs	62 62 62 62 RdGr
1 3 TOP 3 <u>Run</u> 12	Pop 0.9796 0.9797 0.9797 % URBAN Pop 0.9815	0.9796 0.9797 0.9797 Area 0.9815	0.9796 0.9797 0.9797 Compare 0.9815	0.2106 0.6338 0.8703 <u>Clusters</u> 0.4528	0.9694 0.9793 0.9837 Perimeter 0.977	0.9961 0.9945 0.9942 Clst Size 0.9941 0.9943	0.976 0.9771 0.976 Lat 0.9786 0.9809	0.9842 0.9851 0.9832 Lon 0.9854 0.9876	0.0228 0.0154 0.0127 Slope 0.0046	0.9704 0.9713 0.9703 %Urban 0.9763 0.9757	121348125 108149062 109358438 IntSect 111889688	571530938 505822500 512370000 Union 533908125 520050938	0.2123 0.2138 0.2134 LeeSalee 0.2096	6 2 4 1 4 1 1 4 1 1 9	1 24 9 22 9 24 24 Brd 9 24 9 22 9 24	40 40 40 40 SIRs 42	62 62 62 62 RdGr 62 62 62
1 3 TOP 3 <u>Run</u> 12 2	0.9796 0.9797 0.9797 % URBAN Pop 0.9815 0.9838	0.9796 0.9797 0.9797 Area 0.9815 0.9838	0.9796 0.9797 0.9797 Compare 0.9815 0.9838	0.2106 0.6338 0.8703 Clusters 0.4528 0.5087	0.9694 0.9793 0.9837 Perimeter 0.977 0.9833	0.9961 0.9945 0.9942 Clst Size 0.9941 0.9943	0.976 0.9771 0.976 Lat 0.9786 0.9809	0.9842 0.9851 0.9832 Lon 0.9854 0.9876	0.0228 0.0154 0.0127 Slope 0.0046 0.0009	0.9704 0.9713 0.9703 %Urban 0.9763 0.9757	121348125 108149062 109358438 IntSect 111889688 109082812	571530938 505822500 512370000 Union 533908125 520050938	0.2123 0.2138 0.2134 LeeSalee 0.2096 0.2098	6 2 4 1 4 1 1 4 1 1 9	1 24 9 22 9 24 24 Brd 9 24 9 22 9 24	40 40 40 40 SIRs 42 40	62 62 62 62 RdGr 62 62
1 3 TOP 3 <u>Run</u> 12 2 11	Pop 0.9796 0.9797 0.9797 % URBAN Pop 0.9815 0.9838 0.9804	0.9796 0.9797 0.9797 Area 0.9815 0.9838 0.9804	0.9796 0.9797 0.9797 Compare 0.9815 0.9838	0.2106 0.6338 0.8703 Clusters 0.4528 0.5087	0.9694 0.9793 0.9837 Perimeter 0.977 0.9833	0.9961 0.9945 0.9942 Clst Size 0.9941 0.9943	0.976 0.9771 0.976 Lat 0.9786 0.9809	0.9842 0.9851 0.9832 Lon 0.9854 0.9876 0.9865	0.0228 0.0154 0.0127 Slope 0.0046 0.0009 0.0047	0.9704 0.9713 0.9703 %Urban 0.9763 0.9757	121348125 108149062 109358438 IntSect 111889688 109082812	571530938 505822500 512370000 Union 533908125 520050938	0.2123 0.2138 0.2134 LeeSalee 0.2096 0.2098	6 2 4 1 4 1 1 4 1 1 9	1 24 9 22 9 24 24 Brd 9 24 9 22 9 24	40 40 40 40 SIRs 42 40 42	62 62 62 62 RdGr 62 62 62
1 3 TOP 3 <u>Run</u> 12 2 11	Pop 0.9796 0.9797 0.9797 % URBAN Pop 0.9815 0.9838 0.9804	0.9796 0.9797 0.9797 Area 0.9815 0.9838 0.9804	0.9796 0.9797 0.9797 0.9797 <u>Compare</u> 0.9815 0.9838 0.9804	0.2106 0.6338 0.8703 Clusters 0.4528 0.5087 0.4195	0.9694 0.9793 0.9837 Perimeter 0.977 0.9833 0.9818	0.9961 0.9945 0.9942 Clst Size 0.9941 0.9943 0.994	0.976 0.9771 0.976 Lat 0.9786 0.9809 0.9802	0.9842 0.9851 0.9832 Lon 0.9854 0.9876 0.9865	0.0228 0.0154 0.0127 Slope 0.0046 0.0009 0.0047	0.9704 0.9713 0.9703 <u>**Urban</u> 0.9763 0.9757 0.9757	121348125 108149062 109358438 IntSect 111889688 109082812 109454062	571530938 505822500 512370000 <u>Union</u> 533908125 520050938 518504062	0.2123 0.2138 0.2134 LeeSalee 0.2096 0.2098 0.2111	6 2 4 1 4 1 1 4 1 1 9	1 24 9 22 9 24 24 Brd 9 24 9 22 9 24	40 40 40 40 SIRs 42 40 42	62 62 62 62 RdGr 62 62 62
1 3 TOP 3 Run 12 2 11 Run FRun	Pop 0.9796 0.9797 0.9797 ** URBAN Pop 0.9815 0.9838 0.9804 requency in Freq.	0.9796 0.9797 0.9797 Area 0.9815 0.9838 0.9804	0.9796 0.9797 0.9797 Compare 0.9815 0.9838 0.9804	0.2106 0.6338 0.8703 Clusters 0.4528 0.5087 0.4195 Sprd	0.9694 0.9793 0.9837 Perimeter 0.977 0.9833 0.9818	0.9961 0.9945 0.9942 CIst Size 0.9941 0.9943 0.994	0.976 0.9771 0.976 Lat 0.9786 0.9809 0.9802	0.9842 0.9851 0.9832 Lon 0.9854 0.9876 0.9865	0.0228 0.0154 0.0127 Slope 0.0046 0.0009 0.0047	0.9704 0.9713 0.9703 %Urban 0.9763 0.9757	121348125 108149062 109358438 IntSect 111889688 109082812	571530938 505822500 512370000 Union 533908125 520050938	0.2123 0.2138 0.2134 LeeSalee 0.2096 0.2098	6 2 4 1 4 1 1 4 1 1 9	1 24 9 22 9 24 24 Brd 9 24 9 22 9 24	40 40 40 40 SIRs 42 40 42	62 62 62 62 RdGr 62 62 62
1 3 TOP 3 <u>Run</u> 12 2 11	Pop 0.9796 0.9797 0.9797 % URBAN Pop 0.9815 0.9838 0.9804	0.9796 0.9797 0.9797 Area 0.9815 0.9838 0.9804	0.9796 0.9797 0.9797 0.9797 Compare 0.9815 0.9838 0.9804	0.2106 0.6338 0.8703 Clusters 0.4528 0.5087 0.4195	0.9694 0.9793 0.9837 Perimeter 0.977 0.9833 0.9818	0.9961 0.9945 0.9942 Clst Size 0.9941 0.9943 0.994	0.976 0.9771 0.976 Lat 0.9786 0.9809 0.9802	0.9842 0.9851 0.9832 Lon 0.9854 0.9876 0.9865	0.0228 0.0154 0.0127 Slope 0.0046 0.0009 0.0047	0.9704 0.9713 0.9703 <u>**Urban</u> 0.9763 0.9757 0.9757	121348125 108149062 109358438 IntSect 111889688 109082812 109454062	571530938 505822500 512370000 <u>Union</u> 533908125 520050938 518504062	0.2123 0.2138 0.2134 LeeSalee 0.2096 0.2098 0.2111	6 2 4 1 4 1 1 4 1 1 9	1 24 9 22 9 24 24 Brd 9 24 9 22 9 24	40 40 40 40 SIRs 42 40 42	62 62 62 62 RdGr 62 62 62
1 3 TOP 3 Run 12 2 11 Run Fi Run 2	Pop 0.9796 0.9797 0.9797 % URBAN Pop 0.9815 0.9838 0.9804 requency in Freq. 5	0.9796 0.9797 0.9797 Area 0.9815 0.9838 0.9804	0.9796 0.9797 0.9797 0.9815 0.9815 0.9838 0.9804	0.2106 0.6338 0.8703 Clusters 0.4528 0.5087 0.4195 Sprd 19	0.9694 0.9793 0.9837 Perimeter 0.977 0.9833 0.9818	0.9961 0.9945 0.9942 CIst Size 0.9941 0.9943 0.994 SIRS 40	0.976 0.9771 0.976 <u>Lat</u> 0.9786 0.9809 0.9802 <u>RdGr</u> 62	0.9842 0.9851 0.9832 Lon 0.9854 0.9876 0.9865	0.0228 0.0154 0.0127 Slope 0.0046 0.0009 0.0047	0.9704 0.9713 0.9703 <u>**Urban</u> 0.9763 0.9757 0.9757	121348125 108149062 109358438 IntSect 111889688 109082812 109454062	571530938 505822500 512370000 <u>Union</u> 533908125 520050938 518504062	0.2123 0.2138 0.2134 LeeSalee 0.2096 0.2098 0.2111	6 2 4 1 4 1 1 4 1 1 9	24 9 22 9 24 24 2 24 9 24 9 24 9 22 9 24 24	40 40 40 40 SIRs 42 40 42	62 62 62 62 RdGr 62 62 62
1 3 TOP 3 Run 12 2 11 Run F Run 2 3 7 10	Pop 0.9796 0.9797 0.9797 % URBAN Pop 0.9815 0.9838 0.9804 requency in Freq. 5 3 2 2	0.9796 0.9797 0.9797 Area 0.9815 0.9838 0.9804	0.9796 0.9797 0.9797 0.9815 0.9838 0.9804 Diff 6 4 4 4 6	0.2106 0.6338 0.8703 Clusters 0.4528 0.5087 0.4195 Sprd 19 19 21 19	0.9694 0.9793 0.9837 Perimeter 0.977 0.9833 0.9818 Brd 22 24 24 24	0.9961 0.9945 0.9942 CIst Size 0.9941 0.9943 0.994 SIRs 40 40 40 42	0.976 0.9771 0.976 Lat 0.9786 0.9809 0.9802 RdGr 62 62 62 62 62	0.9842 0.9851 0.9832 Lon 0.9854 0.9876 0.9865	0.0228 0.0154 0.0127 Slope 0.0046 0.0009 0.0047 Solution Diff	0.9704 0.9713 0.9703 %Urban 0.9763 0.9757 0.9757 Sprd	121348125 108149062 109358438 IntSect 111889688 109082812 109454062 Brd 19	571530938 505822500 512370000 Union 533908125 520050938 518504062 SIRS 38	0.2123 0.2138 0.2134 LeeSalee 0.2096 0.2098 0.2111 <u>RdGr</u>	6 2 4 1 4 1 1	24 9 22 9 24 24 2 24 9 24 9 24 9 22 9 24 24	40 40 40 40 SIRs 42 40 42	62 62 62 62 RdGr 62 62 62
1 3 TOP 3 Run 12 2 11 Run F Run 2 3 7 10 11	Pop 0.9796 0.9797 0.9797 % URBAN Pop 0.9815 0.9838 0.9804 requency in Freq. 5 3 2 2 2	0.9796 0.9797 0.9797 Area 0.9815 0.9838 0.9804	0.9796 0.9797 0.9797 0.9797 Compare 0.9815 0.9838 0.9804 Diff 6 4 4 4 6 6 6	0.2106 0.6338 0.8703 Clusters 0.4528 0.5087 0.4195 Sprd 19 19 21 19 19	0.9694 0.9793 0.9837 Perimeter 0.977 0.9833 0.9818 Brd 22 24 24 24 22 24	0.9961 0.9945 0.9942 Clst Size 0.9941 0.9943 0.994 SIRs 40 40 40 42 42 42	0.976 0.9771 0.976 Lat 0.9786 0.9809 0.9802 RdGr 62 62 62 62 62 62 62	0.9842 0.9851 0.9832 Lon 0.9854 0.9876 0.9865	0.0228 0.0154 0.0127 Slope 0.0046 0.0009 0.0047 Solution Diff	0.9704 0.9713 0.9703 <u>**Urban</u> 0.9763 0.9757 0.9757	121348125 108149062 109358438 IntSect 111889688 109082812 109454062 Brd	571530938 505822500 512370000 <u>Union</u> 533908125 520050938 518504062 <u>SIRs</u>	0.2123 0.2138 0.2134 LeeSalee 0.2096 0.2098 0.2111	6 2 4 1: 4 1: 4 19 Diff Spro 6 1: 6 1: 6 19	24 9 22 9 24 24 2 24 9 24 9 24 9 22 9 24 24	40 40 40 40 SIRs 42 40 42	62 62 62 62 RdGr 62 62 62
1 3 TOP 3 Run 12 2 11 Run F Run 2 3 7 10 11 18	Pop 0.9796 0.9797 0.9797 % URBAN Pop 0.9815 0.9838 0.9804 requency in Freq. 5 3 2 2 2 2	0.9796 0.9797 0.9797 Area 0.9815 0.9838 0.9804	0.9796 0.9797 0.9797 0.9797 Compare 0.9815 0.9838 0.9804 Diff 4 4 4 6 4 4 6 4 4 6 4 4 6	0.2106 0.6338 0.8703 Clusters 0.4528 0.5087 0.4195 Sprd 19 19 21 19 19 19	0.9694 0.9793 0.9837 Perimeter 0.977 0.9833 0.9818 Brd 22 24 24 22 24 22 24	0.9961 0.9945 0.9942 CIst Size 0.9941 0.9943 0.994 SIRs 40 40 42 42 42 42	0.976 0.9771 0.976 Lat 0.9786 0.9809 0.9802 RdGr 62 62 62 62 62 62 62 62 62	0.9842 0.9851 0.9832 Lon 0.9854 0.9876 0.9865	0.0228 0.0154 0.0127 Slope 0.0046 0.0009 0.0047 Solution Diff 1	0.9704 0.9713 0.9703 %Urban 0.9763 0.9757 0.9757 Sprd	121348125 108149062 109358438 IntSect 111889688 109082812 109454062 Brd 19 21	571530938 505822500 512370000 Union 533908125 520050938 518504062 SIRS 38	0.2123 0.2138 0.2134 LeeSalee 0.2098 0.2111 RdGr 59 61	6 2 4 1: 4 1: 4 1: 4 1: 6 1: 9 Star	24 9 22 9 24 24 2 24 9 24 9 24 9 22 9 24 24	40 40 40 40 SIRs 42 40 42	62 62 62 62 RdGr 62 62 62
1 3 TOP 3 Run 12 2 11 Run F Run 2 3 7 10 11 18 20	Pop 0.9796 0.9797 0.9797 % URBAN Pop 0.9815 0.9838 0.9804 requency in Freq. 5 3 2 2 2 2 2 2	0.9796 0.9797 0.9797 Area 0.9815 0.9838 0.9804	0.9796 0.9797 0.9797 0.9797 Compare 0.9815 0.9838 0.9804 Diff 6 4 4 4 6 6 6	0.2106 0.6338 0.8703 Clusters 0.4528 0.5087 0.4195 Sprd 19 19 21 19 19	0.9694 0.9793 0.9837 Perimeter 0.977 0.9833 0.9818 Brd 22 24 24 24 22 24	0.9961 0.9945 0.9942 Clst Size 0.9941 0.9943 0.994 SIRs 40 40 40 42 42 42	0.976 0.9771 0.976 Lat 0.9786 0.9809 0.9802 RdGr 62 62 62 62 62 62 62	0.9842 0.9851 0.9832 Lon 0.9854 0.9876 0.9865	0.0228 0.0154 0.0127 Slope 0.0046 0.0009 0.0047 Solution Diff	0.9704 0.9713 0.9703 %Urban 0.9763 0.9757 0.9757 Sprd	121348125 108149062 109358438 IntSect 111889688 109082812 109454062 Brd 19	571530938 505822500 512370000 Union 533908125 520050938 518504062 SIRS 38	0.2123 0.2138 0.2134 LeeSalee 0.2096 0.2098 0.2111 <u>RdGr</u>	6 2 4 1 4 1 1	24 9 22 9 24 24 2 24 9 24 9 24 9 22 9 24 24	40 40 40 40 SIRs 42 40 42	62 62 62 62 RdGr 62 62 62 62
1 3 TOP 3 Run 12 2 11 Run F Run 2 3 7 10 11 18 20 1	Pop 0.9796 0.9797 0.9797 % URBAN Pop 0.9815 0.9838 0.9804 requency in Freq. 5 3 2 2 2 2	0.9796 0.9797 0.9797 Area 0.9815 0.9838 0.9804	0.9796 0.9797 0.9797 0.9797 Compare 0.9815 0.9838 0.9804 Diff 4 4 4 6 4 4 6 4 4 6 4 4 6	0.2106 0.6338 0.8703 Clusters 0.4528 0.5087 0.4195 Sprd 19 19 21 19 19 19	0.9694 0.9793 0.9837 Perimeter 0.977 0.9833 0.9818 Brd 22 24 24 22 24 22 24	0.9961 0.9945 0.9942 CIst Size 0.9941 0.9943 0.994 SIRs 40 40 42 42 42 42	0.976 0.9771 0.976 Lat 0.9786 0.9809 0.9802 RdGr 62 62 62 62 62 62 62 62 62	0.9842 0.9851 0.9832 Lon 0.9854 0.9876 0.9865	0.0228 0.0154 0.0127 Slope 0.0046 0.0009 0.0047 Solution Diff 1 3	0.9704 0.9713 0.9703 %Urban 0.9763 0.9757 0.9757 Sprd 22 24 2	121348125 108149062 109358438 IntSect 111889688 109082812 109454062 Brd 19 21 2	571530938 505822500 512370000 <u>Union</u> 533908125 520050938 518504062 <u>SIRs</u> 38 41 3	0.2123 0.2138 0.2134 LeeSalee 0.2096 0.2098 0.2111 RdGr 59 61	6 2 4 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 24 9 22 9 24 24 24 1 Brd 9 24 9 24 9 24 1 24	40 40 40 40 SIRS 42 40 42	62 62 62 62 RdGr 62 62 62 62
1 3 TOP 3 Run 12 2 11 Run F Run 2 3 7 10 11 18 20 1 8	Pop 0.9796 0.9797 0.9797 % URBAN Pop 0.9815 0.9838 0.9804 requency in Freq. 5 3 2 2 2 2 2 2	0.9796 0.9797 0.9797 Area 0.9815 0.9838 0.9804	0.9796 0.9797 0.9797 0.9797 Compare 0.9815 0.9838 0.9804 Diff 4 4 4 6 4 4 6 4 4 6 4 4 6	0.2106 0.6338 0.8703 Clusters 0.4528 0.5087 0.4195 Sprd 19 19 21 19 19 19	0.9694 0.9793 0.9837 Perimeter 0.977 0.9833 0.9818 Brd 22 24 24 22 24 22 24	0.9961 0.9945 0.9942 CIst Size 0.9941 0.9943 0.994 SIRs 40 40 42 42 42 42	0.976 0.9771 0.976 Lat 0.9786 0.9809 0.9802 RdGr 62 62 62 62 62 62 62 62 62	0.9842 0.9851 0.9832 Lon 0.9854 0.9876 0.9865	0.0228 0.0154 0.0127 Slope 0.0046 0.0009 0.0047 Solution Diff 1	0.9704 0.9713 0.9703 %Urban 0.9763 0.9757 0.9757 Sprd	121348125 108149062 109358438 IntSect 111889688 109082812 109454062 Brd 19 21	571530938 505822500 512370000 Union 533908125 520050938 518504062 SIRS 38	0.2123 0.2138 0.2134 LeeSalee 0.2098 0.2111 RdGr 59 61	6 2 4 1: 4 1: 4 1: 4 1: 6 1: 9 Star	1 24 9 22 9 24 24 24 1 Brd 9 24 9 24 9 24 1 24	40 40 40 40 SIRS 42 40 42	62 62 62 62 RdGr 62 62 62 62
1 3 TOP 3 Run 12 2 11 Run F Run 2 3 7 10 11 18 20 1	Pop 0.9796 0.9797 0.9797 % URBAN Pop 0.9815 0.9838 0.9804 requency in Freq. 5 3 2 2 2 2 2 2	0.9796 0.9797 0.9797 Area 0.9815 0.9838 0.9804	0.9796 0.9797 0.9797 0.9797 Compare 0.9815 0.9838 0.9804 Diff 4 4 4 6 4 4 6 4 4 6 4 4 6	0.2106 0.6338 0.8703 Clusters 0.4528 0.5087 0.4195 Sprd 19 19 21 19 19 19	0.9694 0.9793 0.9837 Perimeter 0.977 0.9833 0.9818 Brd 22 24 24 22 24 22 24	0.9961 0.9945 0.9942 CIst Size 0.9941 0.9943 0.994 SIRs 40 40 42 42 42 42	0.976 0.9771 0.976 Lat 0.9786 0.9809 0.9802 RdGr 62 62 62 62 62 62 62 62 62	0.9842 0.9851 0.9832 Lon 0.9854 0.9876 0.9865	0.0228 0.0154 0.0127 Slope 0.0046 0.0009 0.0047 Solution Diff 1 3 2	0.9704 0.9713 0.9703 %Urban 0.9763 0.9757 0.9757 Sprd 22 24 2	121348125 108149062 109358438 IntSect 111889688 109082812 109454062 Brd 19 21 2 2	571530938 505822500 512370000 Union 533908125 520050938 518504062 SIRS 38 41 3 2	0.2123 0.2138 0.2134 LeeSalee 0.2096 0.2098 0.2111 RdGr 59 61	6 2 4 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 24 9 22 9 24 24 24 1 Brd 9 24 9 24 9 24 1 24	40 40 40 40 SIRS 42 40 42	62 62 62 62 RdGr 62 62 62 62
1 3	Pop 0.9796 0.9797 0.9797 % URBAN Pop 0.9815 0.9804 requency in Freq. 5 3 2 2 2 2 2 2 1 1	0.9796 0.9797 0.9797 Area 0.9815 0.9838 0.9804	0.9796 0.9797 0.9797 0.9797 Compare 0.9815 0.9838 0.9804 Diff 4 4 4 6 4 4 6 4 4 6 4 4 6	0.2106 0.6338 0.8703 Clusters 0.4528 0.5087 0.4195 Sprd 19 19 21 19 19 19	0.9694 0.9793 0.9837 Perimeter 0.977 0.9833 0.9818 Brd 22 24 24 22 24 22 24	0.9961 0.9945 0.9942 CIst Size 0.9941 0.9943 0.994 SIRs 40 40 42 42 42 42	0.976 0.9771 0.976 Lat 0.9786 0.9809 0.9802 RdGr 62 62 62 62 62 62 62 62 62	0.9842 0.9851 0.9832 Lon 0.9854 0.9876 0.9865	0.0228 0.0154 0.0127 Slope 0.0046 0.0009 0.0047 Solution Diff 1 3 2	0.9704 0.9713 0.9703 %Urban 0.9763 0.9757 0.9757 Sprd 22 24 2	121348125 108149062 109358438 IntSect 111889688 109082812 109454062 Brd 19 21 2	571530938 505822500 512370000 Union 533908125 520050938 518504062 SIRS 38 41 3 2	0.2123 0.2138 0.2134 LeeSalee 0.2096 0.2098 0.2111 RdGr 59 61	6 2 4 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 24 9 22 9 24 24 24 1 Brd 9 24 9 24 9 24 1 24	40 40 40 40 SIRS 42 40 42	62 62 62 62 RdGr 62 62 62 62
TOP 3 Run 12 2 111 Run FR Run FR Run 11 18 20 1 18 21 17 21 12 17 21 25	Pop 0.9796 0.9797 0.9797 % URBAN Pop 0.9815 0.9804 requency in Freq. 5 3 2 2 2 2 2 2 1 1	0.9796 0.9797 0.9797 Area 0.9815 0.9838 0.9804	0.9796 0.9797 0.9797 0.9797 Compare 0.9815 0.9838 0.9804 Diff 4 4 4 6 4 4 6 4 4 6 4 4 6	0.2106 0.6338 0.8703 Clusters 0.4528 0.5087 0.4195 Sprd 19 19 21 19 19 19	0.9694 0.9793 0.9837 Perimeter 0.977 0.9833 0.9818 Brd 22 24 24 22 24 22 24	0.9961 0.9945 0.9942 CIst Size 0.9941 0.9943 0.994 SIRs 40 40 42 42 42 42	0.976 0.9771 0.976 Lat 0.9786 0.9809 0.9802 RdGr 62 62 62 62 62 62 62 62 62	0.9842 0.9851 0.9832 Lon 0.9854 0.9876 0.9865	0.0228 0.0154 0.0127 Slope 0.0046 0.0009 0.0047 Solution Diff 1 3 2	0.9704 0.9713 0.9703 %Urban 0.9763 0.9757 0.9757 Sprd 22 24 2	121348125 108149062 109358438 IntSect 111889688 109082812 109454062 Brd 19 21 2 2	571530938 505822500 512370000 Union 533908125 520050938 518504062 SIRS 38 41 3 2	0.2123 0.2138 0.2134 LeeSalee 0.2096 0.2098 0.2111 RdGr 59 61	6 2 4 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 24 9 22 9 24 24 24 1 Brd 9 24 9 24 9 24 1 24	40 40 40 40 SIRS 42 40 42	62 62 62 62 RdGr 62 62 62 62
1 3 TOP 3 Run 12 2 11 1	Pop 0.9796 0.9797 0.9797 0.9797 0.9797 % URBAN Pop 0.9815 0.9838 0.9804 requency in Freq. 5 3 2 2 2 2 2 1 1 1 1 1 1 1 1 1	0.9796 0.9797 0.9797 Area 0.9815 0.9838 0.9804	0.9796 0.9797 0.9797 0.9797 Compare 0.9815 0.9838 0.9804 Diff 4 4 4 6 4 4 6 4 4 6 4 4 6	0.2106 0.6338 0.8703 Clusters 0.4528 0.5087 0.4195 Sprd 19 19 21 19 19 19	0.9694 0.9793 0.9837 Perimeter 0.977 0.9833 0.9818 Brd 22 24 24 22 24 22 24	0.9961 0.9945 0.9942 CIst Size 0.9941 0.9943 0.994 SIRs 40 40 42 42 42 42	0.976 0.9771 0.976 Lat 0.9786 0.9809 0.9802 RdGr 62 62 62 62 62 62 62 62 62	0.9842 0.9851 0.9832 Lon 0.9854 0.9876 0.9865	0.0228 0.0154 0.0127 Slope 0.0046 0.0009 0.0047 Solution Diff 1 3 2	0.9704 0.9713 0.9703 %Urban 0.9763 0.9757 0.9757 Sprd 22 24 2	121348125 108149062 109358438 IntSect 111889688 109082812 109454062 Brd 19 21 2 2	571530938 505822500 512370000 Union 533908125 520050938 518504062 SIRS 38 41 3 2	0.2123 0.2138 0.2134 LeeSalee 0.2096 0.2098 0.2111 RdGr 59 61	6 2 4 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 24 9 22 9 24 24 24 1 Brd 9 24 9 24 9 24 1 24	40 40 40 40 SIRS 42 40 42	62 62 62 62 RdGr 62 62 62 62
TOP 3 Run 12 2 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pop 0.9796 0.9797 0.9797 % URBAN Pop 0.9815 0.9838 0.9804 requency in Freq. 5 3 2 2 2 2 2 2 1 1 1 1	0.9796 0.9797 0.9797 Area 0.9815 0.9838 0.9804	0.9796 0.9797 0.9797 0.9797 Compare 0.9815 0.9838 0.9804 Diff 4 4 4 6 4 4 6 4 4 6 4 4 6	0.2106 0.6338 0.8703 Clusters 0.4528 0.5087 0.4195 Sprd 19 19 21 19 19 19	0.9694 0.9793 0.9837 Perimeter 0.977 0.9833 0.9818 Brd 22 24 24 22 24 22 24	0.9961 0.9945 0.9942 CIst Size 0.9941 0.9943 0.994 SIRs 40 40 42 42 42 42	0.976 0.9771 0.976 Lat 0.9786 0.9809 0.9802 RdGr 62 62 62 62 62 62 62 62 62	0.9842 0.9851 0.9832 Lon 0.9854 0.9876 0.9865	0.0228 0.0154 0.0127 Slope 0.0046 0.0009 0.0047 Solution Diff 1 3 2	0.9704 0.9713 0.9703 %Urban 0.9763 0.9757 0.9757 Sprd 22 24 2	121348125 108149062 109358438 IntSect 111889688 109082812 109454062 Brd 19 21 2 2	571530938 505822500 512370000 Union 533908125 520050938 518504062 SIRS 38 41 3 2	0.2123 0.2138 0.2134 LeeSalee 0.2096 0.2098 0.2111 RdGr 59 61	6 2 4 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 24 9 22 9 24 24 24 1 Brd 9 24 9 24 9 24 1 24	40 40 40 40 SIRS 42 40 42	62 62 62 62 RdGr 62 62 62 62
1 3 TOP 3 Run 12 2 11	Pop 0.9796 0.9797 0.9797 0.9797 0.9797 % URBAN Pop 0.9815 0.9838 0.9804 requency in Freq. 5 3 2 2 2 2 2 1 1 1 1 1 1 1 1 1	0.9796 0.9797 0.9797 Area 0.9815 0.9838 0.9804	0.9796 0.9797 0.9797 0.9797 Compare 0.9815 0.9838 0.9804 Diff 4 4 4 6 4 4 6 4 4 6 4 4 6	0.2106 0.6338 0.8703 Clusters 0.4528 0.5087 0.4195 Sprd 19 19 21 19 19 19	0.9694 0.9793 0.9837 Perimeter 0.977 0.9833 0.9818 Brd 22 24 24 22 24 22 24	0.9961 0.9945 0.9942 CIst Size 0.9941 0.9943 0.994 SIRs 40 40 42 42 42 42	0.976 0.9771 0.976 Lat 0.9786 0.9809 0.9802 RdGr 62 62 62 62 62 62 62 62 62	0.9842 0.9851 0.9832 Lon 0.9854 0.9876 0.9865	0.0228 0.0154 0.0127 Slope 0.0046 0.0009 0.0047 Solution Diff 1 3 2	0.9704 0.9713 0.9703 %Urban 0.9763 0.9757 0.9757 Sprd 22 24 2	121348125 108149062 109358438 IntSect 111889688 109082812 109454062 Brd 19 21 2 2	571530938 505822500 512370000 Union 533908125 520050938 518504062 SIRS 38 41 3 2	0.2123 0.2138 0.2134 LeeSalee 0.2096 0.2098 0.2111 RdGr 59 61	6 2 4 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 24 9 22 9 24 24 24 1 Brd 9 24 9 24 9 24 1 24	40 40 40 40 SIRS 42 40 42	62 62 62 62 RdGr 62 62 62 62

Figure 22 –Calibration Run Evaluation Sheet

This first step on the calibration sheet was to sort the data rows in the Statistics.log file by each metric. Then the top three rows for that metric are copied to the evaluation sheet. Below the coefficient values for the three rows in each metric is a summary of the coefficients that performed best for that metric (See A in Figure 23).

Bold black numbers indicate that a coefficient value was consistent for the top three runs of a given metric. The red numbers are showing the majority coefficient. See Figure 23.

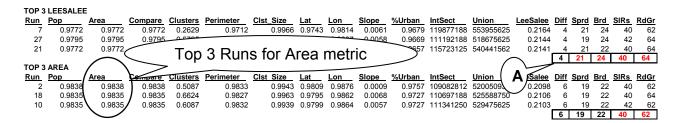


Figure 23 – "Top 3" coefficient runs for each metric

The second step is to determine the frequency of a run's occurrence in "Top 3" sets determined in step 1. Once the frequency is determined, the runs are ranked from highest to lowest frequency of occurrence. The coefficient values are recorded for all runs the appeared more than once in the "Top 3" sets. See Figure 24.

Run Fr	equency in top 3					
Run	Freq.	<u>Diff</u>	Sprd	<u>Brd</u>	SIRs	RdGr
2	5	6	19	22	40	62
3	3	4	19	24	40	62
7	2	4	21	24	40	62
10	2	6	19	22	42	62
11	2	4	19	24	42	62
18	2	6	19	22	40	64
20	2	6	19	24	40	64
1	1					
8	1					
12	1					
17	1					
21	1					
25	1					
26	1					
27	1					
29	1					

Figure 24 –Run Frequency in Top 3 sets

The third step is the evaluation of the coefficient summaries and the statistics found for each metric. The most weight was placed on the first metric of LeeSalee which is the measure of spatial correlation. This metric best represents the accuracy of the model but other metrics may reveal answers to help fine tune the coefficients. For example, cluster size is related to the spread coefficient and increasing the spread coefficient will likely increase the cluster sizes. In addition to the coefficient summaries,

reviewing the run frequency will also indicate which coefficient run sets are creating the best statistics for the most metrics across the model. When the spatial correlation LeeSalee doesn't produce clear and firm summaries, the run frequency is a good backup for coefficient determination. Once the best coefficients are determined for the calibration, the next search ranges are determined and recorded. If the solutions for the current calibration are not as good as previous calibrations, then the previous calibrations are evaluated again for better solutions. See Figure 25.

Solution <u>Diff</u>	Sprd	<u>Brd</u>	<u>SIRs</u>	RdGr	
1	22	19	38	59	Start
3	24	21	41	61	End
2	2	2	3	2	Step
2	2	2	2	2	32 Runs
LeeSale	e was lower,	re-evaluatin	g calibration 6	3	

Figure 25 – Solution for next calibration to search new coefficient set ranges

After nine calibration runs, the final coefficient set was acquired. All summary sheets for these calibration runs can be reviewed in Appendix E. The final coefficient values determined were 1 for Diffusion, 24 for Spread, 19 for Breed, 41 for Slope and 61 for Road Gravity. Statistically, this coefficient set produced the best spatial correlation of all coefficient sets tested to historical growth data with a LeeSalee value of 0.2205 or 22% of perfect spatial correlation.

Visual Check

In addition to review of the statistical data produced by the Urban Growth Simulator, visual checks of the output raster files were made. These visual checks helped reveal coefficients that were set incorrectly such as too much road gravity or not enough spread. These visual checks were made a couple different times throughout the calibration process. Figure 26 is an example of a visual check made for the

coefficient set of Diffusion = 2, Spread = 23, Breed = 23, Slope = 44 and Road Gravity = 60.

The visual check required a raster dataset that showed the actual growth that occurred during the study timeframe. This was achieved by subtracting the seed rater dataset from the most recent control raster data set. The results are a raster dataset with values of 0 for no growth and values of 22 where actual new growth occurred.

The next step was to compare the simulated growth with the actual growth. The simulated growth raster dataset is one of the datasets output from the Urban Growth Simulator processes. The comparison was done by subtracting the actual growth dataset just created from the simulated growth raster datasets. The simulated growth raster datasets have values of 1 for no growth, 23 for existing growth, and 25 for simulated growth. The table below shows the results and classification. See Figure 26 for the map.

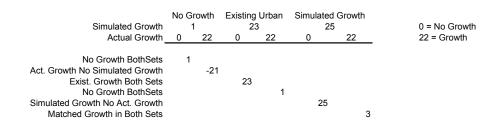


Table 1 –Visual Check Classification – Simulated raster dataset minus Actual raster dataset

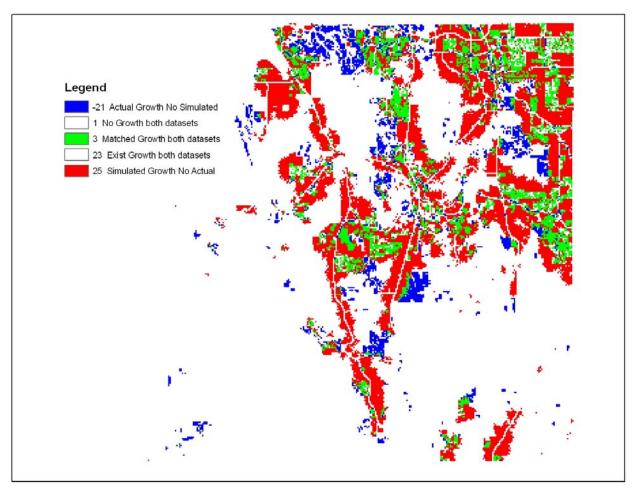


Figure 26 – Visual Check Classification – Simulated raster dataset minus Actual raster dataset

The map in Figure 26 indicates there is considerable simulated growth occurring along roadways. Based on the rules for Road growth, this could be a result of a road gravity coefficient or breed coefficient being set too high. Other areas of concern are the large regions of actual growth that was not simulated. Through cardinal knowledge, it is known that these areas are large planned developments with more than 1000 residences. Such "blooms" of development are difficult to model through the coefficients used in the Urban Growth Simulator.

Error matrices

As a final check of the coefficient determination results, error matrices were performed on the results to determine the producer and user errors. This was performed by selecting 550 random sample points in the study area that are collocated with cells that could become urban. That means that none of the random sample points

were placed in areas of exclusion, transportation or existing urban cells. The actual and simulated values for the cells at the random points were recorded in five year increments for the years 1985, 1990, 1995, and 2000. The values were summarized by recording the totals for actual growth matching simulated growth, actual no growth matching simulated no growth, actual growth where no simulated growth occurred, and simulated growth where no actual growth occurred. These values are then divided by the number of matched, correctly predicted, cells to determine overall, producers, and user's accuracy percentages. In addition, the percentage of omission error, commission error and map accuracy for urban and non-urban are calculated. See Figure 27.

1985		Sim	ulated	Actual	Correct	1990		Sim	ulated	Actual	Correct
		Urban	Not Urban	Totals	Cells			Urban	Not Urban	Totals	Cells
Actual	Urban	4	10	14	4	Actual	Urban	12	15	27	12
Actual	Not Urban		491	536	491	Actual	Not Urban	77	446	523	446
	Simulated Totals	49	501	550	495		Simulated Totals	89	461	550	458
Overall						Overall	ı				
Accuracy		Producers	Users	Omission	Comission	Accuracy		Producers	Users	Omission	Comission
90.00%		Accuracy	Accuracy	Error	Error	83.27%		Accuracy	Accuracy	Error	Error
	Urban		8.16%	71.43%	321.43%		Urban		13.48%	55.56%	285.19%
K _{hat}	Non Urban		98.00%	8.40%	1.87%	K _{hat}	Non Urban	85.28%	96.75%	14.72%	2.87%
0.09099		Map				0.14229		Map			
		Accuracy						Accuracy			
	Urban	20.29%					Urban	22.69%			
	Non Urban	90.69%					Non Urban	85.04%			
	Non Urban			1			Non Urban			1	
<u>1995</u>		Sim	ulated	Actual	Correct	2000		Sim	ulated	Actual	Correct
<u>1995</u>		Sim Urban	Not Urban	Totals	Cells	2000		Sim Urban	Not Urban	Totals	Cells
	Urban	Sim Urban 23	Not Urban 19	Totals 42	Cells 23		Urban	Sim Urban 34	Not Urban 0	Totals 34	Cells 34
1995 Actual	Urban Not Urban	Sim Urban 23 112	Not Urban 19 396	Totals 42 508	Cells 23 396	2000 Actual	Urban Not Urban	Sim <u>Urban</u> 34 168	Not Urban 0 348	Totals 34 516	Cells 34 348
Actual	Urban	Sim Urban 23	Not Urban 19	Totals 42	Cells 23	Actual	Urban	Sim Urban 34	Not Urban 0	Totals 34	Cells 34
Actual	Urban Not Urban	Sim Urban 23 112 135	Not Urban 19 396 415	Totals 42 508 550	Cells 23 396 419	Actual Overall	Urban Not Urban	Sim Urban 34 168 202	Not Urban 0 348 348	Totals 34 516 550	Cells 34 348 382
Actual Overall Accuracy	Urban Not Urban Simulated Totals	Sim Urban 23 112 135	Not Urban 19 396 415 Users	Totals 42 508 550 Omission	Cells 23 396 419 Comission	Actual Overall Accuracy	Urban Not Urban	Sim Urban 34 168 202 Producers	Not Urban 0 348 348 Users	Totals	Cells 34 348 382 Comission
Actual	Urban Not Urban Simulated Totals	Sim Urban 23 112 135 Producers Accuracy	Not Urban 19 396 415 Users Accuracy	Totals 42 508 550 Omission Error	Cells 23 396 419 Comission Error	Actual Overall	Urban Not Urban Simulated Totals	Sim Urban 34 168 202 Producers Accuracy	Not Urban 0 348 348 Users Accuracy	Totals 34 516 550 Omission Error	Cells 34 348 382 Comission Error
Actual Overall Accuracy 76.18%	Urban Not Urban Simulated Totals Urban	Sim Urban 23 112 135 Producers Accuracy 54.76%	Not Urban 19 396 415 Users Accuracy 17.04%	Totals 42 508 550 Omission Error 45.24%	Cells 23 396 419 Comission Error 266.67%	Actual Overall Accuracy 69.45%	Urban Not Urban Simulated Totals Urban	Sim Urban 34 168 202 Producers Accuracy 100.00%	Not Urban 0 348 348 Users Accuracy 16.83%	Totals 34 516 550 Omission Error 0.00%	Cells 34 348 382 Comission Error 494.12%
Actual Overall Accuracy 76.18%	Urban Not Urban Simulated Totals	Sim Urban 23 112 135 Producers Accuracy 54.76% 77.95%	Not Urban 19 396 415 Users Accuracy	Totals 42 508 550 Omission Error	Cells 23 396 419 Comission Error	Actual Overall Accuracy 69.45% K _{hat}	Urban Not Urban Simulated Totals	Sim Urban 34 168 202 Producers Accuracy 100.00% 67.44%	Not Urban 0 348 348 Users Accuracy	Totals 34 516 550 Omission Error	Cells 34 348 382 Comission Error
Actual Overall Accuracy 76.18%	Urban Not Urban Simulated Totals Urban	Sim Urban 23 112 135 Producers Accuracy 54.76% 77.95% Map	Not Urban 19 396 415 Users Accuracy 17.04%	Totals 42 508 550 Omission Error 45.24%	Cells 23 396 419 Comission Error 266.67%	Actual Overall Accuracy 69.45%	Urban Not Urban Simulated Totals Urban	Sim Urban 34 168 202 Producers Accuracy 100.00%	Not Urban 0 348 348 Users Accuracy 16.83%	Totals 34 516 550 Omission Error 0.00%	Cells 34 348 382 Comission Error 494.12%
Actual Overall Accuracy 76.18%	Urban Not Urban Simulated Totals Urban Non Urban	Sim Urban 23 112 135 Producers Accuracy 54.76% 77.95% Map Accuracy	Not Urban 19 396 415 Users Accuracy 17.04%	Totals 42 508 550 Omission Error 45.24%	Cells 23 396 419 Comission Error 266.67%	Actual Overall Accuracy 69.45% K _{hat}	Urban Not Urban Simulated Totals Urban Non Urban	Sim Urban 34 168 202 Producers Accuracy 100.00% 67.44% Map Accuracy	Not Urban 0 348 348 Users Accuracy 16.83%	Totals 34 516 550 Omission Error 0.00%	Cells 34 348 382 Comission Error 494.12%
Actual Overall Accuracy 76.18%	Urban Not Urban Simulated Totals Urban	Sim Urban 23 112 135 Producers Accuracy 54.76% 77.95% Map Accuracy 24.28%	Not Urban 19 396 415 Users Accuracy 17.04%	Totals 42 508 550 Omission Error 45.24%	Cells 23 396 419 Comission Error 266.67%	Actual Overall Accuracy 69.45% K _{hat}	Urban Not Urban Simulated Totals Urban	Sim Urban 34 168 202 Producers Accuracy 100.00% 67.44% Map	Not Urban 0 348 348 Users Accuracy 16.83%	Totals 34 516 550 Omission Error 0.00%	Cells 34 348 382 Comission Error 494.12%

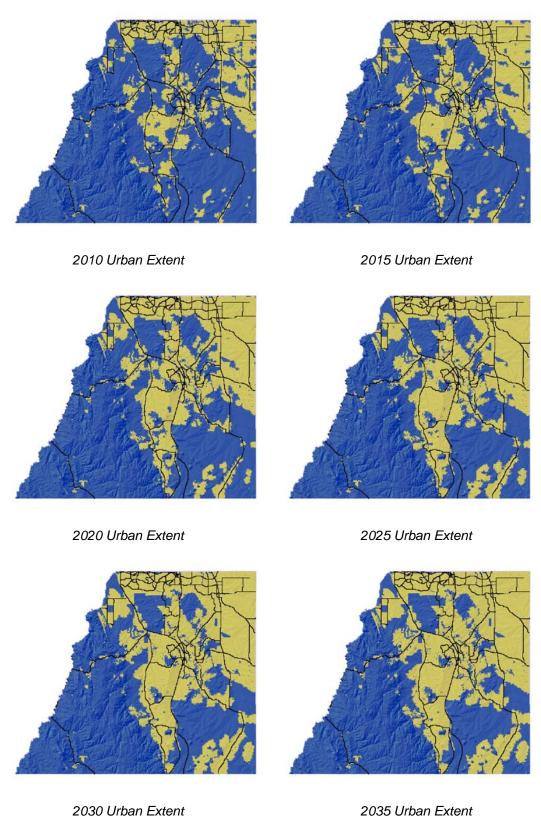
Figure 27 –Error matrix for the calibration control years 1985, 1990, 1995, & 2000

The overall accuracy decreases as the time passes in the calibration process. The decrease in accuracy is almost linear being roughly 7% every 5 years or approximately a decrease in accuracy of 42% over 30 years. The producers accuracy is a measure of how many matched cells in each category of urban vs. non-urban occur divide by the number of actual cells in each category or how close the match is to actual. Conversely, the users accuracy is a measure of how many matched cells in each category of urban vs. non-urban occur divide by the number of simulated cells in each category or how close the match is to the simulation.

Producer Accuracy = Matched Cells / Total Actual Cells
User Accuracy = Matched Cells / Total Simulated Cells
i.e. 1985
Producer Accuracy = 4 / 14 = 28.57% in urban category
User Accuracy = 4 / 49 = 8.16% in urban category

Figure 28 – Producer and User Accuracy formulae

The omission errors and commission errors are a measure of the incorrectly simulated cells divided by the actual cells. Omission errors are cells that were not correctly simulated and commission errors are cells that were incorrectly simulated. The map accuracy is a measure of the actual totals divided by sum of actual totals and incorrectly simulated cells.


Figure 29 –Omission, Commission, and Map Accuracy formulae

It is apparent that simulation creating urban cells improves through 1995 but then drops of by 2000. A 100% producer's accuracy in urban and 100% user's accuracy in non-urban simulation indicates that all simulated non-urban cells are also non-urban in the actual growth but low urban users accuracy indicates a large amount of urban simulation that is not present in the actual growth. The Urban Growth Simulator determined coefficients are too strong and are predicting too much growth even though the coefficient set had the strongest spatial correlation from the calibration process.

Predicted Growth

It is typical for an electric utility work plan to list projects for the short range, medium range and long range time frame. Usually these time frames are 5 years for short range projects, 10 years for medium range projects and 20 years for long range projects. These plans are often revised every 10 years. The minimum growth prediction for one of these work plan studies would then be 20 years but since the 20 years projects are meant to be proactive and serve into the future and are not reactive to past growth, the growth prediction should extend beyond the work plan study time frame.

Growth prediction from the Urban Growth Simulator uses the determined coefficients and runs the same growth rules used in the calibration process. Every cycle or growth year will be output as a raster dataset. Growth prediction was run using the determined coefficients and predicting 30 years of growth in Douglas County. See Figure 30.

 $Figure~30~-30~years~of~Urban~Growth~Prediction- {\it Douglas~County},~{\it Colorado}$

The IREA territory is displayed over the 2030 urban extent map in Figure 31. The area of Douglas County served by IREA is the pink shaded area and the urban extent within the territory shows up as dark red. While most of the growth is not unexpected, particular attention should be paid to the south east corner of the service area. The majority of the urban growth in the southeast corner of Douglas County is served by Mountain View REA but a portion of that growth encroached into IREA territory. Currently, IREA does not have infrastructure in that area to serve the encroachment growth. Under normal invasion rules, Mountain View would be able to serve these customers due to proximity of electrical service to the customer. This would be lost revenue to IREA. Since this encroachment does not become large until the 30 year prediction, it is recommended to add facilities in this area during the 20 year work plan.

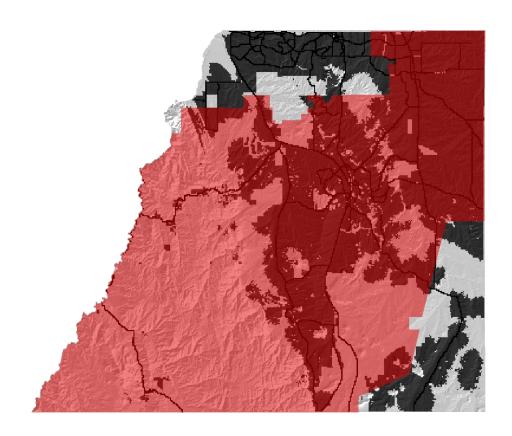


Figure 31 –Predicted 2030 Urban Extent in IREA service area

Conclusions

Although the SELF Urban Growth Simulator project was successful in creating a method for predicting growth and meeting most of the requirement goals, it did fall short in the accuracy of prediction. One of the goals was to create a method for growth prediction on the Windows operating system running on standard PC computers. In addition, the methods were required to be compatible with the most common GIS software deployed throughout the electric utility industry, that being ESRI ArcGIS. It was also required that application development occurs in common programming language that provides portability. The SELF Urban Growth Simulator meets all of these requirements by employing Visual Basic 6.0 to create Windows forms that access ESRI ArcObjects to read and write input and output raster data for urban growth simulation.

Concerns

Concerns with the Urban Growth Simulator are still present though. Although great strides were made in the efficiency of data processing in the application, calibration processes are still time consuming. This is symptomatic of many Cellular Automata models (Dietzel & Clarke, 2006b). There was a strong effort throughout the calibration process to minimize the number of coefficient sets being reviewed. There are varying thoughts about calibration methods in the literature reviewed but the methods used here were chosen for the sake of speed.

Another concern is the accuracy of the determined coefficients. The method used to determine coefficients in this project was to search coefficient ranges using only two values, high and low in the range, to determine smaller search ranges. This method quickly excluded possibilities and may have overlooked coefficient sets that would produce a better spatial correlation. Out of a possible 10 billion coefficient combinations, only 355 combinations were explored using the SELF project methods.

Another concern appeared during the calibration process. The visual checks that were performed showed that certain areas were consistently not urbanized by the growth simulator. These areas are coincident with large planned urban developments

(PUD). These large PUD do not appear to follow the rules of growth that make up the Urban Growth Simulator; yet they may have a large impact on electrical load required.

Preliminary growth prediction

The Urban Growth Simulator has a strong potential to provide a good first look at urban growth in a region. If source data is complete and careful attention is paid to the calibration process, the results of the simulator can be accurate enough to identify areas of growth that may not otherwise be realized. There should be consideration to the resolution of data and extent of study area. A restricted study area can provide localized growth patterns and not see the influence of surrounding regions. Resolution that is too small in scale may over enhance growth and influence the coefficient determination. It is recommended that different adjacent regions be studied in roughly the same scale and extent. Following that, areas that overlap these regions should also be studied in roughly the same scale and extent. The results of these multiple studies can reveal patterns that aid in a broader, complete region, coefficient determination.

County Planning and Land Development Issues

Many counties in Colorado have compiled 30 year development plans. This information about development may be more accurate that the Urban Growth Simulator in terms of type of growth. However, the simulator may in fact predict better <u>when</u> an area may develop. Exceptions to this are when policymakers limit growth due to environmental or economic reasons. The growth simulator should be used in conjunction with the long range plans of a county to be most effective in determining the electrical load needs of a region.

Other land development issues that can't be predicted are individual land owner actions. For example, approximately a third of Elbert County, CO is owned by a single land owner and the person continues to acquire more land as time passes. It is rumored that eventually that landowner will dedicate the land owned to be open space and remain undeveloped. While this has occurred in the past, often times only a portion of the land promised is actually dedicated to open space. This type of action is difficult to simulate. Should all the land intended to be open space be excluded from urban growth simulation or should this land be considered available for urban growth in the

simulation. Incorrectly predicting large acreages of land can be problematic to electrical load forecasting.

Economic issues

Economic issues are not part of the Urban Growth Simulator. Douglas County was one of the top five fastest growing counties in the nation through the late 1990's and early 2000's. Due to the rapid growth of the county, property values began to soar. Prices escalated to the point that land was too expensive to develop and other counties bore the weight of Colorado's growth boom. Two of those counties taking over the role of fastest growing were Adams and Arapahoe, adjacent to the north from Douglas County. A nationwide downturn in the economy has stalled most growth in Colorado but this was prior to land price escalation in Adams and Arapahoe counties. It is expected that when growth returns, Adams and Arapahoe will see growth much sooner and in larger amounts than those that will be realized in the more expensive Douglas County.

The SELF project focused on calibrating Douglas County from 1980 to 2005. This was the period of extreme growth for Douglas County; therefore the determined coefficients are exaggerated toward rapid growth which is not likely to continue for some time. On the contrary, simulation for Adams and Arapahoe Counties over the same time frame would show a sluggish growth and set the determined coefficients too low for the growth boom they will likely see when urban growth returns to Colorado. All three of these counties are served by Intermountain REA.

Future Considerations

Self Modifying

The SLEUTH urban growth model incorporates a self modification mode. This was not employed in the SELF project. The Self Modification process would use the determined coefficients and run 100 iterations of growth cycles covering the study time frame. Each growth cycle or year, the amount of growth is determined. Based on minimum and maximum growth rates determined by the user, the coefficients will modify themselves. For example, if the maximum growth rate is exceeded, then a

boom condition is present and certain coefficient will increase by 10% to promote the boom condition. In contrast, if the growth rates fall below the minimum growth rate creating a bust state, certain coefficients will decrease by 10% to reflect the declining urban growth. This self modification attempt to simulate the S-curve type of growth that has been noted in many urban expansions rather than the linear growth a fixed set of coefficients would infer. At the end of each iteration the ending coefficients are recorded. Every iteration will start with the determined coefficients from the calibration process. After all iterations are complete, the ending values are averaged and a new coefficient set is determined. Predicted growth will use these new coefficients and apply self modification throughout the prediction. Predictions should be run multiple times to insure that the randomness of the growth simulator has not overemphasized growth booms or busts.

Calibration Considerations

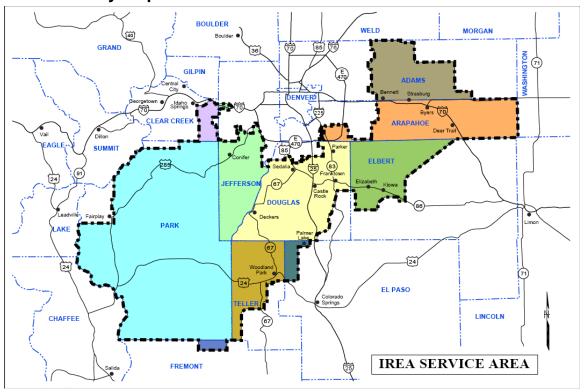
There are two calibration consideration when move forward from the SELF project. The first consideration is the study time frame used for the calibration process. In the SELF project, this time frame was 26 years of growth cycles from 1980 through 2005. Two problems with this time frame have been presented. The uncharacteristic growth boom that Douglas County experienced through this time frame would be neutralized by expanding the study time frame to include 50 years or more. This is possible with the source data used but would require more calibration time to determine a coefficient solution.

The second consideration is the coefficient determination process. Although the methods were systematic in the process of eliminating coefficients, the number of combinations sample were comparatively small compared to other SLEUTH model calibration processes. User of the Urban Growth Simulator should be prepared to accept the fact that the calibration process requires months, not weeks to complete. While the searching of coefficient ranges can still be systematic, the number of coefficient steps in a calibration run should be 3 to 5 steps as compared to the 2 or 3 steps used in the SELF project.

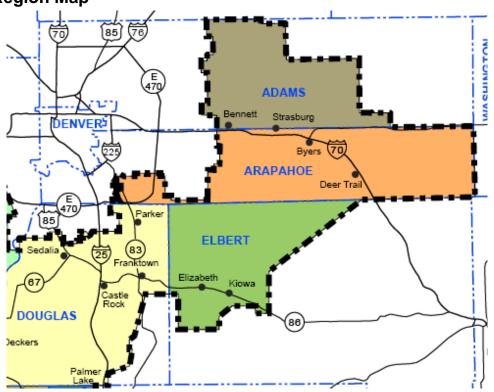
SELF Project Phase 2 – Projecting Electrical Load

There are different methods to projecting electrical load demands spatially including those written about by Lee Willis (Willis et al., 1995) and Jessica (Noonan) Valenti (Noonan) as well as current work by David Hollema of United Power in Brighton Colorado. Each of these methods should be reviewed and tested for accuracy and correlation to IREA's needs. In addition, portable recording meters need to be placed on specific load types during different seasons. For example, they should be placed on typical residential equipment for a couple weeks in the winter and a couple weeks in the The same should be done for commercial property, and large power summer. installations. It may be desirable to record different type of residential such as large or small square footage, multi-family, or air conditioned versus non-air conditioned homes. The data from these recorder meters will then be analyzed for determination of load factors and diversity factors that can be applied to different zoning and county planning data. This data coupled with historical meter read data and substation feeder load data can then be extrapolated to the urban growth predicted by the Urban Growth Simulator for the determination of required system improvements to insure adequate power delivery to the utility customers.

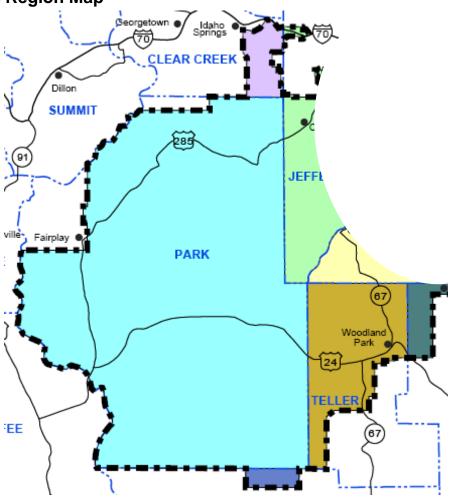
Bibliography


- Aitken, S., Mitchell, D., & Staeheli, L. (2003). Urban geography. In G. L. Gaile, & C. J. Wilmott (Eds.), *Geography in america at the dawn of the 21st century* (pp. 237-263). N.Y.: Oxford University Press.
- Candau, J. (2007a). *Home* ~ *project gigalopolis*. Retrieved 2/13, 2007, from http://www.ncgia.ucsb.edu/projects/gig/project_gig.htm
- Candau, J. (2007b). *Project gigalopolis: Urban and land cover model*. Retrieved 2/9, 2007, from http://www.ncgia.ucsb.edu/projects/gig/project_gig.htm
- Candau, J. (June 2002).

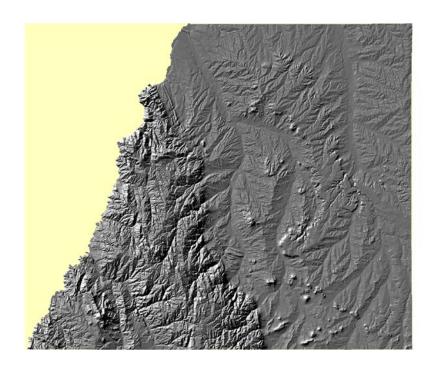
 Temporal calibration sensitivity of the SLEUTH urban growth model. Unpublished Master of Arts, University of California, Santa Barbara,
- Chow, M. Y., Zhu, J. X., & Tram, H. (1998). Application of fuzzy multi-objective decision making in spatial load forecasting. *IEEE Transactions on Power Systems*, 13(3), 1185-1190.
- Dietzel, C., & Clarke, K. (2006a). The effect of disaggregating land use categories in cellular automata during model calibration and forecasting. *Computers Environment and Urban Systems*, 30(1), 78-101.
- Dietzel, C., & Clarke, K. C. (2006b). Decreasing computational time of urban cellular automata through model portability. *GeoInformatica*, 10(2), 197-211.
- Ghiassi, M., Zimbra, D. K., & Saidane, H. (2006). Medium term system load forecasting with a dynamic artificial neural network model. *Electric Power Systems Research*, 76(5), 302-316.
- Herold, M., Goldstein, N. C., & Clarke, K. C. (2003). The spatiotemporal form of urban growth: Measurement, analysis and modeling. *Remote Sensing of Environment*, 86(3), 286-302.
- Jantz, C. A., & Goetz, S. J. (2005). Analysis of scale dependencies in an urban land-use-change model. *International Journal of Geographical Information Science*, 19(2), 217-241.
- Legates, D. R., Gopal, S., & Rogerson, P. (2003). Mathematical models and quantitative methods. In G. L. Gaile, & C. J. Wilmott (Eds.), *Geography in america at the dawn of the 21st century* (pp. 442-457). N.Y.: Oxford University Press.
- Margerum, R. D. (2005). Collaborative growth management in metropolitan denver: "fig leaf or valiant effort?". *Land use Policy*, 22(4), 373-386.
- Noonan, J. *Spatial load forecasting: Bringing GIS to T & D asset management.* Retrieved 2/3, 2007, from http://gis.esri.com/library/userconf/proc05/papers/pap1003.pdf


- OĞUZ, H. (2004). *Modeling urban growth and land Use/Land cover change in the houston metropolitan area from 2002-2030*. Unpublished Doctor of Philosophy, Texas A&M University, Retrieved from http://txspace.tamu.edu/bitstream/1969.1/2231/1/etd-tamu-2004A-FORS-Oguz-1.pdf
- O'Sullivan, D. (2004). Too much of the wrong kind of data. In M. F. Goodchild, & D. G. Janelle (Eds.), *Spatially integrated social science* (pp. 95-107). N.Y.: Oxford University Press.
- United State Environmental Protection Agency. *Multi-resolution land characteristics consortium* (*MRLC*). Retrieved September 3, 2007, from http://www.epa.gov/mrlc/nlcd.html
- United States Geological Survey. (2007). *National map*. Retrieved 2/21, 2007, from http://nationalmap.gov/
- White, R., Straatman, B., & Engelen, G. (2004). Planning scenario visualization and assessment. In M. F. Goodchild, & D. G. Janelle (Eds.), *Spatially integrated social science* (pp. 420-442). N.Y.: Oxford University Press.
- Willis, H. L., Engel, M. V., & Buri, M. J. (1995). Spatial load forecasting. *Computer Applications in Power, IEEE*, 8(2), 40-43.
- Willis, H. L., Finley, L. A., & Buri, M. J. (1995). Forecasting electric demand of distribution system planning in rural and sparsely populated regions. *IEEE Transactions on Power Systems*, 10(4), 2008-2013.
- Willis, H. L., Tram, H. N., & Rackliffe, G. B. (1992). Short-range load forecasting for distribution system planning-an improved method for extrapolating feeder load growth. *Power Systems, IEEE Transactions on*, 7(3), 1306-1312.

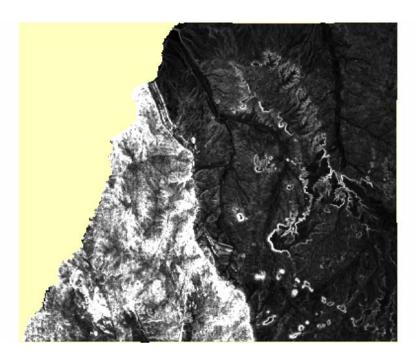
Appendix A – IREA Territory Maps


Service Territory Map

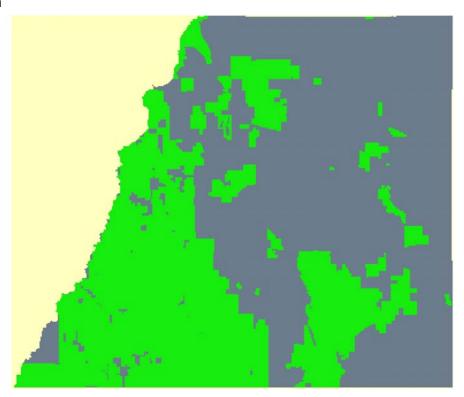
Plains Region Map

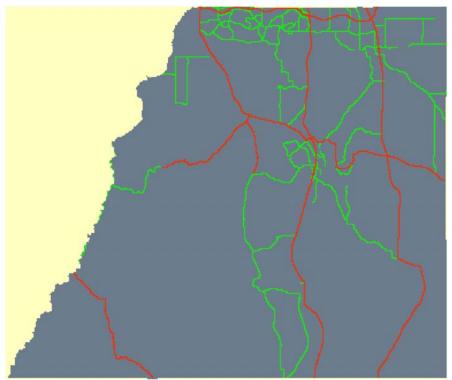


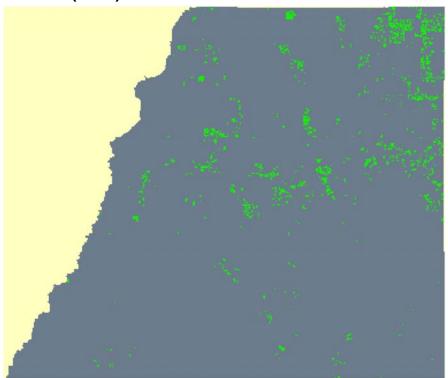
Mountains Region Map

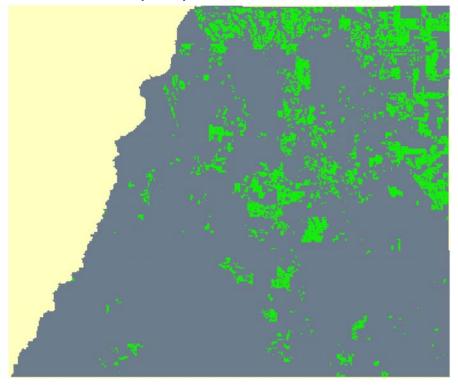


Appendix B – Self Project Input Data Examples

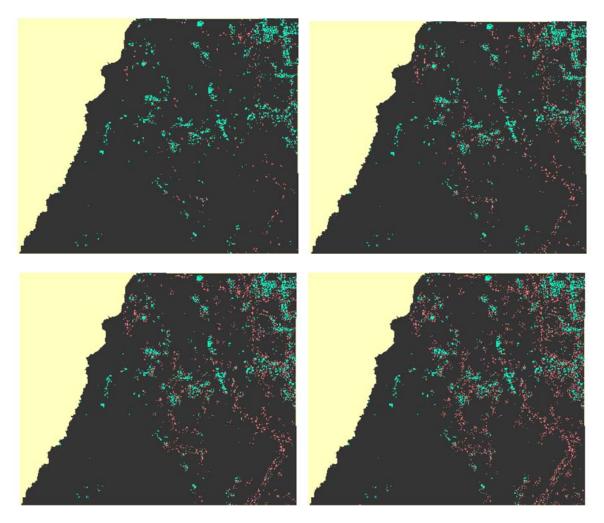

Hillshade


Slope


Exclusion


Transportation

Seed Urban Extent (1980)



Control Year Urban Extent (2005)

)

Appendix C – Growth Simulator Raster Output Examples

Simulator Output Red represents new Growth 5yr, 10yr, 15yr, 20yr

Appendix D – Growth Simulator Statistical Output Examples

Iterations.Log

Run	Year I	мс	SnG S	SpG	EdG	RdG	GrwPix	Pop	Area	Compare	Clusters	Perimeter	Clst Size	Lat	Lon	Slope	%Urban	IntSect	Union	LeeSalee	Diff S	prd E	Brd S	iRs R	RdGr
1	1985	1	147	74	3630	1578			122152500		540	740250	320000						139725000	0.0841		25	25	25	25
1	1990	1	267	148	8448	2703	11566	11566	260235000		578	1066200	537314	36	30	8.2409	0.2595	29677500	283432500	0.1047	25	25	25	25	25
1	1995	1	370	187	14132	3355	18044	18044	405990000		541	1273800	843272	56	47	8.1447	0.4049	59512500	440302500	0.1352	25	25	25	25	25
1	2000	1	437	205	19668	3661	23971	23971	539347500		480	1375500	1228453	74	63	8.1647	0.5381	98640000	594562500	0.1659	25	25	25	25	25
1	2005	1	501	227	24604	3751	29083	29083	654367500		432	1416150	1631719	90	76	8.2098	0.6531	138487500	723037500	0.1915	25	25	25	25	25
1	1985	2	155	82	3543	1605	5385	5385	121162500		513	741900	334298	17	14	8.47	0.1208	11317500	121162500	0.0934	25	25	25	25	25
1	1990	2	267	129	8181	2610	11187	11187	251707500		523	1041150	577256	35	29	8.2588	0.251	29137500	251707500	0.1158	25	25	25	25	25
1	1995	2	369	174	13793	3293	17629	17629	396652500		536	1255200	833843	55	46	8.203	0.3956	59850000	396652500	0.1509	25	25	25	25	25
1	2000	2	449	204	19419	3607	23679	23679	532777500		482	1377300	1211172	73	62	8.1976	0.5316	101160000	532777500	0.1899	25	25	25	25	25
1	2005	2	515	228	24379	3718	28840	28840	648900000		440	1430250	1591312	89	75	8.2512	0.6477	143325000	648900000	0.2209	25	25	25	25	25
1	1985	3		94	3647	1545		5456	122760000		521	736050	332793		14				122760000	0.096	25	25	25	25	25
1	1990	3	3 282	138	8355	2627	11402	11402	256545000		547	1049850	560978	35	30	8.1903	0.2559		256545000	0.1111	25	25	25	25	25
	1995	3		185	13962			17705			529	1257000	849343						398362500	0.1482	25	25	25	25	25
1	2000	3		217	19561	3507	23724	23724			483	1381350	1211227	73					533790000	0.1907	25	25	25	25	25
1		3		237	24658	3628		29020			443	1441650	1590389				0.6517		652950000	0.2176		25	25	25	25
	1985	4		90	3916			5848			538	755100	339006				0.1312		131580000	0.0934	25	25	25	25	25
1	1990	4		146	8728						576	1082400	555156				0.2686		269347500	0.1118	25	25	25	25	25
1		4		181	14341	3526			414000000		544	1316550	854586				0.4129		414000000	0.1459	25	25	25	25	25
1		4		220	20147	3789			553005000		500	1423650	1208385						553005000	0.1855	25	25	25	25	25
	2005	4		258	25281	3866	29889				449	1451550	1612283				0.6712		672502500	0.2152		25	25	25	25
	1985	1		86	3752			5488			463	727800	373850				0.1231		123480000	0.0949	75	25	25	25	25
	1990	1		182	8499			11354	255465000		434	974550	699833				0.2548		255465000	0.1076	75	25	25	25	25
	1995	1		253	13822		17213	17213			427	1136250	1020878				0.3862		387292500	0.1425	75	25	25	25	25
2		1		307	18988			22679			412	1242450	1355680						510277500	0.1826	75	25	25	25	25
	2005	1		349	23830						412	1306200	1635455				0.6236		624847500	0.2117		25	25	25	25
	1985	2		82	3719	1385	5378	5378			441	724350	387602				0.1207		121005000	0.0932	75	25	25	25	25
	1990	2		187	8431	2128		11113			473	967800	632569				0.2494		250042500	0.1097	75	25	25	25	25
	1995	2		251	13749			17003			471	1150350	916099						382567500	0.1438		25	25	25	25
	2000	2		295	19257	2641	22791	22791	512797500		446	1263600	1260908				0.5116		512797500	0.182	75	25	25	25	25
	2005	2		313	24370			28104			433	1339500	1576871	87			0.6311		632340000	0.2114	75 75	25	25	25	25
	1985 1990	3		116 182	3677 8265	1351 2083	5366 10877	5366			485 485	722550 970800	350582 606387	17 34			0.1204 0.2441		120735000 244732500	0.095 0.1138	75 75	25 25	25 25	25 25	25 25
								10877			443									0.1136					25
2	1995 2000	3		240 296	13775 19316			17018	382905000 514462500		443	1159500 1265850	974763 1278520				0.3819 0.5132		382905000 514462500	0.1507	75 75	25 25	25 25	25 25	25 25
	2005	3		334	24346				633037500		426	1354050	1603838						633037500	0.1645		25	25	25	25
	1985	4		122	3834	1366		5578			499	744300	350261	17					125505000	0.209	75	25	25	25	25
	1990	4		207	8802			11583			492	1012950	627759				0.1232		260617500	0.1096	75	25	25	25	25
	1995	4		262	14561	2569			403537500		457	1194000	989705						403537500	0.1448	75	25	25	25	25
	2000	4		316	20318			24006			444	1291800	1326639				0.5389		540135000	0.1812		25	25	25	25
	2005	4		355	25360	2821	29288	29288			421	1369800	1683224				0.6577		658980000	0.2079	75	25	25	25	25
	1985	1		229	4573						623	1130850	398102						195885000	0.0709	25	25	75	25	25
	1990	1		405	11262			16748			588	1413300	730102				0.3758		376830000	0.087	25	25	75	25	25
3		1		494	17992			23869			541	1526100	1090439				0.5356		537052500	0.1252	25	25	75	25	25
	2000	1		592	24330				684652500		485	1568400	1521464						684652500	0.1665		25	75	25	25
3		1		655	29139				795780000		435	1552800	1952069				0.7939		795780000	0.2007	25	25	75	25	25
3		2		248	4774	3927	9105	9105			639	1163100	402289				0.2043		204862500	0.0653	25	25	75	25	25
3	1990	2		402	11416			16978			576	1446300	754336				0.381		382005000	0.0883		25	75	25	25
	1995	2		505	18173		24085		541912500		546	1512150	1089066				0.5404		541912500	0.1247	25	25	75	25	25
3		2		570	24228	5143		30324			469	1528500	1567804				0.6806		682290000	0.1682		25	75	25	25
3	2005	2		637	28777	5154			787297500		427	1539750	1968566		91		0.7856		787297500	0.2019	25	25	75	25	25
	1985	3		247	4896			9031	203197500		659	1132650	387382				0.2026		203197500	0.0683	25	25	75	25	25
3	1990	3	286	401	11518	4794	16999	16999	382477500		582	1424550	747062	53	44	8.1042	0.3814	33660000	382477500	0.088	25	25	75	25	25
3	1995	3	367	524	18211	4987	24089	24089	542002500		545	1526100	1090899		63	8.1335	0.5405	67072500	542002500	0.1237	25	25	75	25	25
3	2000	3	423	622	24404	5027	30476	30476	685710000		465	1566150	1588984	94	80	8.2106	0.6841	111915000	685710000	0.1632	25	25	75	25	25
3	2005	3	453	668	29289	5053	35463	35463	797917500		426	1543350	1998433	110	93	8.2679	0.7962	157027500	797917500	0.1968	25	25	75	25	25

Actuals.Log

Run Year MC SnG SpG	EdG RdG GrwPi	x Pop Area	Compare Clusters	Perimeter	Clst Size	Lat	Lon	Slope	%Urban	IntSect	Union	LeeSalee Diff Sprd Brd SIRs RdGr
1985		1303 2931750	0 457	489150	176012	4	3	9.3452	0.0327			
1990		2350 5287500	0 467	601500	223314	7	6	9.5143	0.0679			
1995		4170 9382500	0 481	755700	303399	13	11	9.3513	0.1406			
2000		6838 15385500	0 555	977550	371432	21	18	9.2847	0.2648			
2005		9207 20715750	0 590	1144200	439436	29	24	9.4629	0.4032			

Averages.Log

Run	Year M								Compare									Union	<u>LeeSalee</u>					
1	1985	156.25	85	3684	1604.25	5529.5		124413750		528		331524.25		14.25	8.36	0.12		128806875	0.09	25	25	25	25	25
1	1990	269.25	140.25	8428	2694	11531.5		259458750		556	1059900	557676	31.5	30	8.22	0.26		265258125	0.11	25	25	25	25	25
1	1995	365	181.75	14057	3340.75	17944.5	17944.5	403751250		537.5	1275637.5	845261	49	46.75	8.14	0.4	59698125	412329375	0.15	25	25	25	25	25
1	2000	436.75	211.5	19698.75	3641	23988		539730000		486.25	1389450			62.75	8.16	0.54		553533750	0.18	25	25	25	25	25
1	2005	499.25	237.5	24730.5		29208		657180000		441	1434900	1606425.75		76.25	8.2	0.66		674347500	0.21	25	25	25	25	25
	1985	220.25	101.5	3745.5	1385.25	5452.5		122681250		472		365573.75		14.25	8.19	0.12		122681250	0.09	75	25	25	25	25
	1990	390.5	189.5	8499.25	2152.5			252714375		471	981525	641637		29.25	8.05	0.25		252714375	0.11	75	25	25	25	25
	1995	514.75	251.5		2549.25		17292.25	389075625		449.5	1160025	975361.25		45	7.99	0.39	56581875	389075625	0.15	75	25	25	25	25
	2000	627	303.5	19469.75	2685		23085.25	519418125		435.75	1265925	1305436.75	63.25	60.5	8.04	0.52	94820625	519418125	0.18	75	25	25	25	25
2	2005	702	337.75	24476.5	2808.25	28324.5	28324.5	637301250		423	1342387.5	1624847	77.5	73.75	8.09	0.64	133801875	637301250	0.21	75	25	25	25	25
	1985	158	235.75	4697.75	3745	8836.5		198821250		629.25	1125637.5	399118.25	24.25	23.25	8.08	0.2	13786875	198821250	0.07	25	25	75	25	25
3	1990	265	391.75	11169.25	4806	16632	16632	374220000		579.75	1410937.5	736009.75	45.25	43.25	8.07	0.37	33300000	374220000	0.09	25	25	75	25	25
3	1995	342.5	503.75	17815.75	5022.25	23684.25	23684.25	532895625		544.75	1516575	1075075.75	64.5	61.75	8.11	0.53	67044375	532895625	0.13	25	25	75	25	25
3	2000	402	589.5	23947.75	5090.25	30029.5	30029.5	675663750		476	1553475	1531929	81.75	78.25	8.19	0.67	112966875	675663750	0.17	25	25	75	25	25
3	2005	441	645	28755.25	5113.75	34955	34955	786487500		433.5	1549162.5	1938406.25	95.25	91.25	8.25	0.78	158490000	786487500	0.2	25	25	75	25	25
	1985	199.5	295		2854.75	8054.5	8054.5	181226250		556.5	1023037.5	418750		20.75	7.87	0.18	12796875	181226250	0.07	75	25	75	25	25
4	1990	342.75	501.25	11057.75	3412	15313.75	15313.75	344559375		546.25	1263487.5	726711.5	41.75	40	7.94	0.34	30825000	344559375	0.09	75	25	75	25	25
4	1995	433.25	631.75	17843.75	3586.25	22495	22495	506137500		508	1399387.5	1099867.75	61.25	58.5	8.01	0.5	62955000	506137500	0.12	75	25	75	25	25
4	2000	493	718.5	24145.25	3622.75	28979.5	28979.5	652038750		444.25	1447837.5	1588225.75	79.25	75.75	8.08	0.65	107763750	652038750	0.17	75	25	75	25	25
4	2005	542.5	790.75	29127.75	3712.5	34173.5	34173.5	768903750		419.75	1450725	1960905	93.25	89.25	8.16	0.77	151908750	768903750	0.2	75	25	75	25	25
5	1985	142.5	66.75	17224	3424	20857.25	20857.25	469288125		435.25	1234800	1199473.75	57	54.5	8.23	0.47	22421250	469288125	0.05	25	75	25	25	25
5	1990	191	95	30300.75	3739	34325.75	34325.75	772329375		365	1394962.5	2261695.25	93.75	89.5	8.27	0.77	44431875	772329375	0.06	25	75	25	25	25
5	1995	211.75	106.25	36184.5	3757	40259.5	40259.5	905838750		344.25	1462050	2787127.5	110	105.25	8.27	0.9	80454375	905838750	0.09	25	75	25	25	25
5	2000	223	110	38326.5	3757.5	42417	42417	954382500		325.25	1506225	3099394.25	115.75	110.75	8.32	0.95	132260625	954382500	0.14	25	75	25	25	25
5	2005	229.75	112.75	39060.75	3758.75	43162	43162	971145000		324.5	1539112.5	3159799.25	117.75	112.75	8.35	0.97	177221250	971145000	0.18	25	75	25	25	25
6	1985	199.75	83.25	16955	2549	19787	19787	445207500		385	1109325	1291436.25	54.25	52	8.06	0.44	21712500	445207500	0.05	75	75	25	25	25
6	1990	285.75	122.75	29494	2740.75	32643.25	32643.25	734473125		331.75	1265812.5	2376886.75	89.25	85.25	8.18	0.73	42828750	734473125	0.06	75	75	25	25	25
6	1995	325.5	141.75	35197.75	2751.75	38416.75	38416.75	864376875		310.75	1355175	2953016.25	105	100.25	8.24	0.86	76359375	864376875	0.09	75	75	25	25	25
6	2000	340.25	149.25	37474.5	2753.25	40717.25	40717.25	916138125		303.25	1413600	3195704.75	111.25	106.25	8.29	0.91	121843125	916138125	0.13	75	75	25	25	25
6	2005	352.75	155.25	38531.5	2753.75	41793.25	41793.25	940348125		297	1464562.5	3344829	114	109	8.33	0.94	165105000	940348125	0.18	75	75	25	25	25
7	1985	140.5	201.5	21003	4885.25	26230.25	26230.25	590180625		439.25	1421475	1466687.25	71.75	68.5	8.14	0.59	23220000	590180625	0.04	25	75	75	25	25
7	1990	178.25	252.5	33139.75	4947.75	38518.25	38518.25	866660625		363.5	1464187.5	2534000.25	105	100.5	8.22	0.86	45061875	866660625	0.05	25	75	75	25	25
7	1995	186.25	263.75	36894.25	4948.25	42292.5	42292.5	951581250		340.5	1496812.5	2955228.75	115.75	110.5	8.29	0.95	81652500	951581250	0.09	25	75	75	25	25
7	2000	190.75	270	37826.5	4948.5	43235.75	43235.75	972804375		331.25	1539675	3099413.5	118	112.75	8.35	0.97	133183125	972804375	0.14	25	75	75	25	25
7	2005	196	275.25	38166.25	4948.5	43586	43586	980685000		333.5	1565025	3102130.75	119.25	114	8.37	0.98	177654375	980685000	0.18	25	75	75	25	25

Statistics.Log

Run Year MC SnG SpG EdG RdG	GrwPix Pop Area	Compare								IntSect	Union					IRs R	RdGr
1		.9693 0.969		0.8449				0.0028	0.937		674347500	0.2108	25	25	25	25	25
2		.9714 0.971		0.8921	0.9984			0	0.9392		637301250	0.21	75	25	25	25	25
3		.9473 0.947		0.6637	0.9949			0.0052	0.907		786487500	0.2015		25	75	25	25
4		.9565 0.956		0.7448				0.0007	0.9237		768903750	0.1976	75	25	75	25	25
5		.6786 0.678		0.8226				0.0155		177221250		0.1825	25	75	25	25	25
6		.7013 0.701		0.8849			0.7185	0.0027	0.6366		940348125	0.1756	75	75	25	25	25
7		.5864 0.586		0.9775		0.58		0.0043	0.5256		980685000	0.1812		75	75	25	25
8		.6245 0.624		0.9661	0.7429			0.0001	0.5537		972298125	0.1791	75	75	75	25	25
9		.9724 0.972		0.8542					0.9428		661983750	0.2175	25	25	25	75	25
10		.9731 0.973		0.8927	0.9978			0.0027	0.9423		632480625	0.2104	75	25	25	75	25
11		.9459 0.945		0.6294					0.907		785373750	0.2031	25	25	75	75	25
12		.9621 0.962		0.7657	0.9932			0.0005	0.9274		780682500	0.1939	75	25	75	75	25
13		.6832 0.683		0.809					0.6031		973434375	0.1816	25	75	25	75	25
14		.7033 0.703		0.8686		0.6883			0.641		952385625	0.1778	75	75	25	75	25
15		.5801 0.580		0.9579				0.0004	0.5097		979447500	0.1812		75	75	75	25
16		.6237 0.623		0.9118		0.6166		0.0001	0.5625		968574375	0.1793		75	75	75	25
17		.9633 0.963		0.8454				0.0001	0.927		679702500	0.2158	25	25	25	25	75
18		.9652 0.965		0.8139		0.962			0.9283		692836875	0.2124	75	25	25	25	75
19		.9224 0.922		0.4103			0.9334	0.0288	0.8793		811276875	0.2057	25	25	75	25	75
20		.9412 0.941		0.5534				0.0083	0.9032		830199375	0.1962		25	75	25	75
21		.6544 0.654		0.8074				0.0895	0.5914	177525000		0.1829	25	75	25	25	75
22		.6573 0.657		0.8818				0.0112	0.5803		973406250	0.1818	75	75	25	25	75
23		.6203 0.620		0.9683			0.6456	0.0272	0.5525		979830000	0.1817	25	75	75	25	75
24		.5789 0.578		0.9754				0.0001	0.4956		983368125	0.1808	75	75	75	25	75
25		.9682 0.968		0.8413			0.9754	0.0045	0.9341		681817500	0.2204	25	25	25	75	75
26		.9678 0.967		0.8348			0.9737	0.008	0.9301		674808750	0.2182	75	25	25	75	75
27		.9254 0.925		0.403			0.9342	0.0024	0.873		816024375	0.2044	25	25	75	75	75
28		.9431 0.943		0.5743			0.953	0.0055	0.896	162315000		0.197	75	25	75	75	75
29		.6399 0.639		0.8018			0.6526	0.0133	0.5685		973254375	0.1825	25	75	25	75	75
30		.6646 0.664		0.849			0.678		0.5921	176895000		0.1818	75	75	25	75	75
31		.5817 0.581		0.9382		0.5754	0.599	0.0023	0.5101	177828750		0.1813	25	75	75	75	75
32	0.5768 0.	.5768 0.576	0.4766	0.9602	0.7295	0.5673	0.5905	0.0026	0.5101	177761250	982046250	0.181	75	75	75	75	75

Appendix E – Growth Simulator Statistical Analysis

Run		Area			Perimeter		Lat	Lon	Slope	%Urban		Union			Brd SIRs RdGr	
25	0.971	0.971	0.971	0.6796	0.8468	0.9954		0.9778	0.0031		149281875		0.204		25 75 75	
1 17	0.9703 0.97	0.9703 0.97	0.9703 0.97	0.9229 0.6728	0.8651 0.8476		0.9671 0.9653		0.0264 0.0006		143876250	711922500 736183125	0.2021 0.2016		25 25 25 25 25 75	
17	0.97	0.97	0.97	0.0720	0.0476	0.9001	0.9653	0.9756	0.0006	0.9369	140301075	730103123		25 25	25 25 75 25 25 75	1
TOP 3	AREA															•
Run		Area			Perimeter		Lat	Lon	Slope	%Urban		Union	LeeSalee		Brd SIRs RdGr	
10	0.9729	0.9729	0.9729	0.8862	0.8966		0.9693	0.9782	0.0002		134842500	709481250	0.1901		25 75 25	
2 25	0.9714 0.971	0.9714 0.971	0.9714 0.971	0.9103 0.6796	0.8946 0.8468	0.9983		0.9759 0.9778	0.0048		136080000	702928125 731812500	0.1936 0.204		25 25 25 25 75 75	
25	0.371	0.371	0.371	0.0730	0.0400	0.9954	0.300	0.3770	0.0031	0.3333	143201073	731012300		75 25	25 75 25	
	CLUSTER															
	Pop				Perimeter			Lon		%Urban		Union			Brd SIRs RdGr	
4 12	0.9618 0.9616	0.9618 0.9616	0.9618 0.9616	0.9628 0.9575	0.7914 0.7425		0.9579 0.9557	0.9677	0.0016 0.0002		151441875 153590625	833445000 844813125	0.1817 0.1818		75 25 25 75 75 25	
28	0.9441	0.9441	0.9441		0.4808		0.9395	0.953	0.0002		164306250	882196875	0.1862		75 75 75	
														75 25	75 75 25]
		PERIMETEI														
Run	0.5715	Area 0.5715	0.5715	0.4833	Perimeter 0.9836		<u>Lat</u> 0.559	Lon	0.0073	%Urban		<u>Union</u> 1011543750	0.1759		Brd SIRs RdGr 75 75 75	
32	0.5715	0.5715	0.5754	0.4653	0.9636		0.5639		0.0073			1011543750	0.1759		75 75 75 75 75 75	
15	0.5879	0.5879	0.5879		0.9653		0.5826		0.0000			1009850625	0.1763		75 75 25	
														25 75	75 75 75]
	CLUSTER			01	Danimata.	01-1 01			Slope	%Urban	1	Union	1 0 - 1	D!# 01	Brd SIRs RdGr	
<u>Run</u> 2	0.9714	Area 0.9714	0.9714	0.9103	Perimeter 0.8946		0.9667	0.9759	0.0048		136080000	702928125	<u>LeeSalee</u> 0.1936		25 25 25	
19	0.9291	0.9291	0.9291		0.444		0.9219		0.0314		168660000	856912500	0.1968		75 25 75	
20	0.9399	0.9399	0.9399	0.89	0.5566	0.9971	0.9342	0.9475	0	0.8977	163732500	864793125	0.1893		75 25 75	_
														75 25	75 25 75]
Run		TAL ALIGNN Area		Cluetore	Perimeter	Clet Size	Lat	Lon	Slope	%Urban	IntSect	Union	LeeSalee	Diff Sprd	Brd SIRs RdGr	
10	0.9729	0.9729	0.9729	0.8862	0.8966		0.9693		0.0002		134842500	709481250	0.1901		25 75 25	
25	0.971	0.971	0.971	0.6796	0.8468	0.9954		0.9778	0.0031	0.9335	149281875	731812500	0.204	25 25	25 75 75	
1	0.9703	0.9703	0.9703	0.9229	0.8651	0.9952	0.9671	0.9757	0.0264	0.9325	143876250	711922500	0.2021		25 25 25	
TOP 3	/EDTICAL	ALIGNMEN	т											25 25	25 75 25	J
Run				Clusters	Perimeter	Clst Size	Lat	Lon	Slope	%Urban	IntSect	Union	LeeSalee	Diff Sprd	Brd SIRs RdGr	
10	0.9729	0.9729	0.9729	0.8862	0.8966		0.9693		0.0002		134842500	709481250	0.1901		25 75 25	
10 25	0.9729 0.971	0.971	0.9729 0.971	0.6796	0.8468	0.9954	0.968	0.9778	0.0031	0.9335	149281875	731812500	0.204	25 25	25 75 25 25 75 75	
10	0.9729		0.9729	0.6796		0.9954		0.9778		0.9335	149281875			25 25 75 25	25 75 25 25 75 75 25 25 25	
10 25	0.9729 0.971 0.9714	0.971	0.9729 0.971	0.6796	0.8468	0.9954	0.968	0.9778	0.0031	0.9335	149281875	731812500	0.204	25 25	25 75 25 25 75 75	
10 25 2 TOP 3	0.9729 0.971 0.9714 SLOPE	0.971 0.9714 Area	0.9729 0.971 0.9714 Compare	0.6796 0.9103 Clusters	0.8468 0.8946 Perimeter	0.9954 0.9983 Clst Size	0.968 0.9667 Lat	0.9778 0.9759 Lon	0.0031 0.0048 Slope	0.9335 0.9407 <u>%Urban</u>	149281875 136080000 IntSect	731812500 702928125 <u>Union</u>	0.204 0.1936 <u>LeeSalee</u>	25 25 75 25 75 25 Diff Sprd	25 75 25 25 75 75 25 25 25 25 75 25 Brd SIRS RdGr]
10 25 2 TOP 3 3 Run 5	0.9729 0.971 0.9714 SLOPE Pop 0.6921	0.971 0.9714 Area 0.6921	0.9729 0.971 0.9714 <u>Compare</u> 0.6921	0.6796 0.9103 <u>Clusters</u> 0.513	0.8468 0.8946 Perimeter 0.8612	0.9954 0.9983 <u>Clst Size</u> 0.8201	0.968 0.9667 <u>Lat</u> 0.6802	0.9778 0.9759 <u>Lon</u> 0.7105	0.0031 0.0048 Slope 0.0803	0.9335 0.9407 %Urban 0.6243	149281875 136080000 IntSect 176866875	731812500 702928125 <u>Union</u> 1000237500	0.204 0.1936 <u>LeeSalee</u> 0.1768	25 25 75 25 75 25 Diff Sprd 25 75	25 75 25 25 25 25 25 25 25 25 25 25 25 25 25	
10 25 2 TOP 3: Run 5 29	0.9729 0.971 0.9714 SLOPE Pop 0.6921 0.6574	0.971 0.9714 Area 0.6921 0.6574	0.9729 0.971 0.9714 Compare 0.6921 0.6574	0.6796 0.9103 <u>Clusters</u> 0.513 0.5029	0.8468 0.8946 Perimeter 0.8612 0.7683	0.9954 0.9983 <u>Clst Size</u> 0.8201 0.8042	0.968 0.9667 <u>Lat</u> 0.6802 0.6476	0.9778 0.9759 Lon 0.7105 0.6732	0.0031 0.0048 Slope 0.0803 0.0624	0.9335 0.9407 %Urban 0.6243 0.5848	149281875 136080000 IntSect 176866875 177631875	731812500 702928125 <u>Union</u> 1000237500 1000316250	0.204 0.1936 LeeSalee 0.1768 0.1776	25 25 75 25 75 25 Diff Sprd 25 75 25 75	25 75 25 25 75 75 25 25 25 25 75 25 8 8 8 25 25 25 25 25 25 25 75 75	
10 25 2 TOP 3 3 Run 5	0.9729 0.971 0.9714 SLOPE Pop 0.6921	0.971 0.9714 Area 0.6921	0.9729 0.971 0.9714 <u>Compare</u> 0.6921	0.6796 0.9103 <u>Clusters</u> 0.513 0.5029	0.8468 0.8946 Perimeter 0.8612	0.9954 0.9983 <u>Clst Size</u> 0.8201 0.8042	0.968 0.9667 <u>Lat</u> 0.6802	0.9778 0.9759 <u>Lon</u> 0.7105	0.0031 0.0048 Slope 0.0803	0.9335 0.9407 %Urban 0.6243 0.5848	149281875 136080000 IntSect 176866875 177631875	731812500 702928125 <u>Union</u> 1000237500	0.204 0.1936 LeeSalee 0.1768 0.1776 0.1962	25 25 75 25 75 25 Diff Sprd 25 75 25 75	25 75 25 25 25 25 25 25 25 25 25 25 25 25 25	
10 25 2 TOP 3: Run 5 29 27	0.9729 0.971 0.9714 SLOPE Pop 0.6921 0.6574 0.9235	0.971 0.9714 Area 0.6921 0.6574	0.9729 0.971 0.9714 Compare 0.6921 0.6574 0.9235	0.6796 0.9103 <u>Clusters</u> 0.513 0.5029 0.8813	0.8468 0.8946 Perimeter 0.8612 0.7683 0.3907	0.9954 0.9983 <u>Clst Size</u> 0.8201 0.8042 0.9971	0.968 0.9667 <u>Lat</u> 0.6802 0.6476 0.9155	0.9778 0.9759 Lon 0.7105 0.6732	0.0031 0.0048 Slope 0.0803 0.0624 0.0535	0.9335 0.9407 <u>%Urban</u> 0.6243 0.5848 0.8723	149281875 136080000 IntSect 176866875 177631875 167461875	731812500 702928125 <u>Union</u> 1000237500 1000316250 853706250	0.204 0.1936 LeeSalee 0.1768 0.1776 0.1962	25 25 75 25 75 25 Diff Sprd 25 75 25 75 25 25 25 75	25 75 25 25 75 75 25 25 75 25 25 75 25 25 75 25 25 75 75 75 25 75 75	
10 25 2 TOP 3: Run 5 29 27 TOP 3: Run	0.9729 0.971 0.9714 SLOPE Pop 0.6921 0.6574 0.9235 % URBAN Pop	0.971 0.9714 Area 0.6921 0.6574 0.9235	0.9729 0.971 0.9714 Compare 0.6921 0.6574 0.9235 Compare	0.6796 0.9103 <u>Clusters</u> 0.513 0.5029 0.8813 <u>Clusters</u>	0.8468 0.8946 Perimeter 0.8612 0.7683 0.3907	0.9954 0.9983 Clst Size 0.8201 0.8042 0.9971 Clst Size	0.968 0.9667 <u>Lat</u> 0.6802 0.6476 0.9155	0.9778 0.9759 <u>Lon</u> 0.7105 0.6732 0.932	0.0031 0.0048 Slope 0.0803 0.0624 0.0535	0.9335 0.9407 <u>%Urban</u> 0.6243 0.5848 0.8723 <u>%Urban</u>	149281875 136080000 <u>IntSect</u> 176866875 177631875 167461875 <u>IntSect</u>	731812500 702928125 <u>Union</u> 1000237500 1000316250 853706250 <u>Union</u>	0.204 0.1936 LeeSalee 0.1768 0.1776 0.1962	25 25 75 25 75 25 75 25 Diff Sprd 25 75 25 25 25 25 25 Diff Sprd Sprd Sprd Sprd Sprd Sprd Sprd Sprd	25 75 25 25 75 25 25 75 25 26 25 25 27 25 25 27 25 25 27 25 25 27 75 75 27 75 75 28 75 75 28 21 21 21 21 21 21 21 21 21 21 21 21 21	
10 25 2 TOP 3: Run 5 29 27 TOP 3: Run 2	0.9729 0.9714 0.9714 SLOPE Pop 0.6921 0.6574 0.9235 % URBAN Pop 0.9714	0.971 0.9714 Area 0.6921 0.6574 0.9235 Area 0.9714	0.9729 0.971 0.9714 Compare 0.6921 0.6574 0.9235 Compare 0.9714	0.6796 0.9103 <u>Clusters</u> 0.513 0.5029 0.8813 <u>Clusters</u> 0.9103	0.8468 0.8946 Perimeter 0.8612 0.7683 0.3907 Perimeter 0.8946	0.9954 0.9983 Clst Size 0.8201 0.8042 0.9971 Clst Size 0.9983	0.968 0.9667 <u>Lat</u> 0.6802 0.6476 0.9155 <u>Lat</u> 0.9667	0.9778 0.9759 Lon 0.7105 0.6732 0.932 Lon 0.9759	0.0031 0.0048 Slope 0.0803 0.0624 0.0535 Slope 0.0048	0.9335 0.9407 <u>%Urban</u> 0.6243 0.5848 0.8723 <u>%Urban</u> 0.9407	149281875 136080000 IntSect 176866875 177631875 167461875 IntSect 136080000	731812500 702928125 <u>Union</u> 1000237500 1000316250 853706250 <u>Union</u> 702928125	0.204 0.1936 <u>LeeSalee</u> 0.1768 0.1776 0.1962 <u>LeeSalee</u> 0.1936	25 25 75 25 75 25 76 25 75 25 75 25 75 25 75 25 75 26 75 25 75 25 75 25 75 25 25 25 25 25 25 25 25 25 25 25 25 25	25 75 25 25 75 25 25 75 25 25 25 25 25 25 25 25 75 75 25 75 75 25 75 75 26 818 RdGr 27 25 25 27 75 75 28 75 75 25 25 25 25	
10 25 2 TOP 3: Run 5 29 27 TOP 3: Run	0.9729 0.971 0.9714 SLOPE Pop 0.6921 0.6574 0.9235 % URBAN Pop	0.971 0.9714 Area 0.6921 0.6574 0.9235	0.9729 0.971 0.9714 Compare 0.6921 0.6574 0.9235 Compare	0.6796 0.9103 <u>Clusters</u> 0.513 0.5029 0.8813 <u>Clusters</u> 0.9103 0.8862	0.8468 0.8946 Perimeter 0.8612 0.7683 0.3907	0.9954 0.9983 Clst Size 0.8201 0.8042 0.9971 Clst Size 0.9983 0.9946	0.9687 Lat 0.6802 0.6476 0.9155 Lat 0.9667 0.9693	0.9778 0.9759 Lon 0.7105 0.6732 0.932 Lon 0.9759	0.0031 0.0048 Slope 0.0803 0.0624 0.0535 Slope 0.0048 0.0002	0.9335 0.9407 %Urban 0.6243 0.5848 0.8723 %Urban 0.9407 0.9386	149281875 136080000 IntSect 176866875 177631875 167461875 IntSect 136080000 134842500	731812500 702928125 <u>Union</u> 1000237500 1000316250 853706250 <u>Union</u>	0.204 0.1936 LeeSalee 0.1768 0.1776 0.1962	25 25 75 25 75 25 Diff Sprd 25 75 25 75 25 25 25 75 Diff Sprd 75 25 75 25 75 25 75 25	25 75 25 25 75 25 25 75 25 26 25 25 27 25 25 27 25 25 27 25 25 27 75 75 27 75 75 28 75 75 28 21 21 21 21 21 21 21 21 21 21 21 21 21	
10 25 2 TOP 3 5 Run 5 29 27 TOP 3 6 Run 2 10	0.9729 0.971 0.9714 SLOPE Pop 0.6921 0.6574 0.9235 % URBAN Pop 0.9714 0.9729	0.971 0.9714 Area 0.6921 0.6574 0.9235 Area 0.9714 0.9729	0.9729 0.971 0.9714 Compare 0.6921 0.6574 0.9235 Compare 0.9714 0.9729	0.6796 0.9103 <u>Clusters</u> 0.513 0.5029 0.8813 <u>Clusters</u> 0.9103 0.8862	0.8468 0.8946 Perimeter 0.8612 0.7683 0.3907 Perimeter 0.8946 0.8966	0.9954 0.9983 Clst Size 0.8201 0.8042 0.9971 Clst Size 0.9983 0.9946	0.9687 Lat 0.6802 0.6476 0.9155 Lat 0.9667 0.9693	0.9778 0.9759 Lon 0.7105 0.6732 0.932 Lon 0.9759 0.9782	0.0031 0.0048 Slope 0.0803 0.0624 0.0535 Slope 0.0048 0.0002	0.9335 0.9407 %Urban 0.6243 0.5848 0.8723 %Urban 0.9407 0.9386	149281875 136080000 IntSect 176866875 177631875 167461875 IntSect 136080000 134842500	731812500 702928125 <u>Union</u> 1000237500 1000316250 853706250 <u>Union</u> 702928125 709481250	0.204 0.1936 LeeSalee 0.1768 0.1776 0.1962 LeeSalee 0.1936 0.1901	25 25 75 25 75 25 Diff Sprd 25 75 25 75 25 25 25 75 Diff Sprd 75 25 75 25 75 25 75 25	25	
10 25 2 TOP 3: Run 5 29 27 TOP 3: Run 2 10	0.9729 0.971 0.9714 SLOPE Pop 0.6921 0.9235 % URBAN Pop 0.9714 0.9729 0.97	0.971 0.9714 Area 0.6921 0.6574 0.9235 Area 0.9714 0.9729 0.97	0.9729 0.971 0.9714 Compare 0.6921 0.6574 0.9235 Compare 0.9714 0.9729	0.6796 0.9103 <u>Clusters</u> 0.513 0.5029 0.8813 <u>Clusters</u> 0.9103 0.8862	0.8468 0.8946 Perimeter 0.8612 0.7683 0.3907 Perimeter 0.8946 0.8966	0.9954 0.9983 <u>Clst Size</u> 0.8201 0.8042 0.9971 <u>Clst Size</u> 0.9983 0.9946	0.9687 Lat 0.6802 0.6476 0.9155 Lat 0.9667 0.9693	0.9778 0.9759 Lon 0.7105 0.6732 0.932 Lon 0.9759 0.9782 0.9756	0.0031 0.0048 Slope 0.0803 0.0624 0.0535 Slope 0.0048 0.0002 0.0006	0.9335 0.9407 %Urban 0.6243 0.8723 %Urban 0.9407 0.9386 0.9369	149281875 136080000 IntSect 176866875 177631875 167461875 IntSect 136080000 134842500	731812500 702928125 <u>Union</u> 1000237500 1000316250 853706250 <u>Union</u> 702928125 709481250	0.204 0.1936 LeeSalee 0.1768 0.1776 0.1962 LeeSalee 0.1936 0.1901	25 25 75 25 75 25 Diff Sprd 25 75 25 25 25 75 25 75 Diff Sprd 75 25 75 25 75 25 25 25 25 25	25	
10 25 2 2 TOP 3 3 Run 5 29 27 TOP 3 4 Run 10 17 Run Fr	0.9729 0.971 0.9714 SLOPE Pop 0.6921 0.6574 0.9235 % URBAN Pop 0.9714 0.9729 0.97	0.971 0.9714 Area 0.6921 0.6574 0.9235 Area 0.9714 0.9729 0.97	0.9729 0.971 0.9714 Compare 0.6921 0.6574 0.9235 Compare 0.9714 0.9729 0.97	0.6796 0.9103 Clusters 0.513 0.5029 0.8813 Clusters 0.9103 0.8862 0.6728	0.8468 0.8946 Perimeter 0.8612 0.7683 0.3907 Perimeter 0.8946 0.8966 0.8476	0.9954 0.9983 Clst Size 0.8201 0.8042 0.9971 Clst Size 0.9983 0.9986 0.9881	0.968 0.9667 <u>Lat</u> 0.6802 0.6476 0.9155 <u>Lat</u> 0.9667 0.9693 0.9653	0.9778 0.9759 Lon 0.7105 0.6732 0.932 Lon 0.9759 0.9782 0.9756	0.0031 0.0048 Slope 0.0803 0.0624 0.0535 Slope 0.0048 0.0002 0.0006 Solution	0.9335 0.9407 %Urban 0.6243 0.5848 0.8723 %Urban 0.9407 0.9386 0.9369	149281875 136080000 IntSect 176866875 177631875 167461875 IntSect 136080000 134842500 148381875	731812500 702928125 <u>Union</u> 1000237500 1000316250 853706250 <u>Union</u> 702928125 709481250 736183125	0.204 0.1936 LeeSalee 0.1768 0.1776 0.1962 LeeSalee 0.1936 0.1901 0.2016	25 25 75 25 75 25 Diff Sprd 25 75 25 25 25 75 25 75 Diff Sprd 75 25 75 25 75 25 25 25 25 25	25	
10 25 2 TOP 3: Run 5 29 27 TOP 3: Run 2 10	0.9729 0.971 0.9714 SLOPE Pop 0.6921 0.9235 % URBAN Pop 0.9714 0.9729 0.97	0.971 0.9714 Area 0.6921 0.6574 0.9235 Area 0.9714 0.9729 0.97	0.9729 0.971 0.9714 Compare 0.6921 0.6574 0.9235 Compare 0.9714 0.9729	0.6796 0.9103 <u>Clusters</u> 0.513 0.5029 0.8813 <u>Clusters</u> 0.9103 0.8862	0.8468 0.8946 Perimeter 0.8612 0.7683 0.3907 Perimeter 0.8946 0.8966	0.9954 0.9983 <u>Clst Size</u> 0.8201 0.8042 0.9971 <u>Clst Size</u> 0.9983 0.9946	0.9687 Lat 0.6802 0.6476 0.9155 Lat 0.9667 0.9693	0.9778 0.9759 Lon 0.7105 0.6732 0.932 Lon 0.9759 0.9782 0.9756	0.0031 0.0048 Slope 0.0803 0.0624 0.0535 Slope 0.0048 0.0002 0.0006	0.9335 0.9407 %Urban 0.6243 0.8723 %Urban 0.9407 0.9386 0.9369	149281875 136080000 IntSect 176866875 177631875 167461875 IntSect 136080000 134842500	731812500 702928125 <u>Union</u> 1000237500 1000316250 853706250 <u>Union</u> 702928125 709481250	0.204 0.1936 LeeSalee 0.1768 0.1776 0.1962 LeeSalee 0.1936 0.1901	25 25 75 25 75 25 Diff Sprd 25 75 25 25 25 75 25 75 Diff Sprd 75 25 75 25 75 25 25 25 25 25	25	
10 25 2 TOP 3 : Run 5 29 27 TOP 3 : Run 17 2 10 17 Run Fr Run 2 10 10 17	0.9729 0.971 0.9714 SLOPE Pop 0.6921 0.6574 0.9235 % URBAN Pop 0.9714 0.9729 0.97 equency in Freq. 4	0.971 0.9714 Area 0.6921 0.6574 0.9235 Area 0.9714 0.9729 0.97	0.9729 0.971 0.9714 2 Compare 0.6921 0.6574 0.9235 2 Compare 0.9714 0.9729 0.97	0.6796 0.9103 Clusters 0.513 0.5029 0.8813 Clusters 0.9103 0.8862 0.6728 Sprd 25 25	0.8468 0.8946 Perimeter 0.8612 0.7683 0.3907 Perimeter 0.8946 0.8966 0.8476	0.9954 0.9983 Clst Size 0.8201 0.8042 0.9971 Clst Size 0.9983 0.9946 0.9881	0.968 0.9667 Lat 0.6802 0.6476 0.9155 Lat 0.9667 0.9693 0.9653 RdGr 25 25	0.9778 0.9759 Lon 0.7105 0.6732 0.932 Lon 0.9759 0.9782 0.9756	0.0031 0.0048 Slope 0.0803 0.0624 0.0535 Slope 0.0048 0.0002 0.0006 Solution Diff 25	0.9335 0.9407 %Urban 0.6243 0.5548 0.8723 %Urban 0.9407 0.9369 Sprd 25	149281875 136080000 IntSect 176866875 177631875 167461875 IntSect 136080000 134842500 148381875 Brd 25	731812500 702928125 <u>Union</u> 1000237500 1000316250 853706250 <u>Union</u> 702928125 709481250 736183125 <u>SIRS</u> 25	0.204 0.1936 LeeSalee 0.1768 0.1776 0.1962 LeeSalee 0.1936 0.1901 0.2016	25 25 75 25 Diff Sprd 25 75 25 75 25 75 25 75 25 25 25 25 25 25 25 25 25 25 25 25 25	25	
10 25 2 TOP 3 1	0.9729 0.9710 0.9711 0.9714 SLOPE Pop 0.6921 0.6574 0.9235 0.9714 0.9729 0.97 0.9714 0.9729 4 4 4 4	0.971 0.9714 Area 0.6921 0.6574 0.9235 Area 0.9714 0.9729 0.97	0.9729 0.971 0.9714 Compare 0.6921 0.6574 0.9235 Compare 0.9714 0.9729 0.97 0.97	0.6796 0.9103 Clusters 0.513 0.5029 0.8813 Clusters 0.9103 0.8862 0.6728 Sprd 25 25 25 25	0.8468 0.8946 Perimeter 0.8612 0.7683 0.3907 Perimeter 0.8946 0.8476 Brd 25 25 25 25	0.9954 0.9983 Clst Size 0.8201 0.8042 0.9971 Clst Size 0.9983 0.9946 0.9881 SIRS 25 75	0.968 0.9667 Lat 0.6802 0.6476 0.9155 Lat 0.9667 0.9653 RdGr 25 25 25 75	0.9778 0.9759 Lon 0.7105 0.6732 0.932 Lon 0.9759 0.9782 0.9756	0.0031 0.0048 Slope 0.0803 0.0624 0.0535 Slope 0.0048 0.0002 0.0006 Solution Diff	0.9335 0.9407 %Urban 0.6243 0.8723 %Urban 0.9407 0.9386 0.9369	149281875 136080000 IntSect 176866875 177631875 167461875 IntSect 136080000 134842500 148381875	731812500 702928125 <u>Union</u> 1000237500 1000316250 853706250 <u>Union</u> 702928125 709481250 736183125	0.204 0.1936 LeeSalee 0.1768 0.1766 0.1962 LeeSalee 0.1936 0.1901 0.2016	25 25 75 25 75 25 Diff Sprd 25 75 25 25 25 75 25 75 Diff Sprd 75 25 75 25 75 25 25 25 25 25	25	
10 25 2 2 2 2 2 10 17 Run Fr Run Fr Run 2 10 2 2 10 2 10 2 10 2 10 2 10 2 10 2	0.9729 0.971 0.9714 SLOPE Pop 0.6921 0.6574 0.9235 WURBAN Pop 0.9714 0.9729 0.97 equency in Freq. 4 4 4 2	0.971 0.9714 Area 0.6921 0.6574 0.9235 Area 0.9714 0.9729 0.97	0.9729 0.971 0.9714 2.0674 0.6921 0.6574 0.9235 2.09714 0.9729 0.97 2.097 2.097	0.6796 0.9103 <u>Clusters</u> 0.513 0.5029 0.8813 <u>Clusters</u> 0.9103 0.8862 0.6728 <u>Sprd</u> 25 25 25 25 25	0.8468 0.8946 Perimeter 0.8612 0.7683 0.3907 Perimeter 0.8946 0.8966 0.8476 Brd 25 25 25 25 25	0.9954 0.9983 Clst Size 0.8201 0.8042 0.9971 Clst Size 0.9983 0.9946 0.9881 SIRs 75 75 75 25	0.968 0.9667 Lat 0.6802 0.6476 0.9155 Lat 0.9667 0.9693 0.9653 RdGr 25 25 75 525	0.9778 0.9759 Lon 0.7105 0.6732 0.932 Lon 0.9759 0.9782 0.9756	0.0031 0.0048 Slope 0.0803 0.0624 0.0535 Slope 0.0048 0.0002 0.0006 Solution Diff 25 13	0.9335 0.9407 %Urban 0.6243 0.5848 0.8723 %Urban 0.9407 0.9386 0.9369 Sprd 25	149281875 136080000 IntSect 176866875 177631875 167461875 IntSect 136080000 134842500 148381875 Brd 25 13	731812500 702928125 <u>Union</u> 1000237500 1000316250 853706250 <u>Union</u> 702928125 709481250 736183125 <u>SIRs</u> 25	0.204 0.1936 LeeSalee 0.1768 0.1776 0.1962 LeeSalee 0.1936 0.1901 0.2016 RdGr 75	25 25 25 75	25	
10 25 2 TOP 3 1	0.9729 0.9710 0.9711 0.9714 SLOPE Pop 0.6921 0.6574 0.9235 0.9714 0.9729 0.97 0.9714 0.9729 4 4 4 4	0.971 0.9714 Area 0.6921 0.6574 0.9235 Area 0.9714 0.9729 0.97	0.9729 0.971 0.9714 Compare 0.6921 0.6574 0.9235 Compare 0.9714 0.9729 0.97 0.97	0.6796 0.9103 Clusters 0.513 0.5029 0.8813 Clusters 0.9103 0.8862 0.6728 Sprd 25 25 25 25	0.8468 0.8946 Perimeter 0.8612 0.7683 0.3907 Perimeter 0.8946 0.8476 Brd 25 25 25	0.9954 0.9983 Clst Size 0.8201 0.8042 0.9971 Clst Size 0.9983 0.9946 0.9881 SIRS 25 75	0.968 0.9667 Lat 0.6802 0.6476 0.9155 Lat 0.9667 0.9653 RdGr 25 25 25 75	0.9778 0.9759 Lon 0.7105 0.6732 0.932 Lon 0.9759 0.9782 0.9756	0.0031 0.0048 Slope 0.0803 0.0624 0.0535 Slope 0.0048 0.0002 0.0006 Solution Diff 25	0.9335 0.9407 %Urban 0.6243 0.5548 0.8723 %Urban 0.9407 0.9369 Sprd 25	149281875 136080000 IntSect 176866875 177631875 167461875 IntSect 136080000 134842500 148381875 Brd 25	731812500 702928125 <u>Union</u> 1000237500 1000316250 853706250 <u>Union</u> 702928125 709481250 736183125 <u>SIRS</u> 25	0.204 0.1936 LeeSalee 0.1768 0.1776 0.1962 LeeSalee 0.1936 0.1901 0.2016	25 25 75 25 Diff Sprd 25 75 25 75 25 75 25 75 25 25 25 25 25 25 25 25 25 25 25 25 25	25	
10 25 2 2 TOP 3: Run 5 29 27 TOP 3: Run 17 10 25 1 17 4 5	0.9729 0.971 0.9714 SLOPE Pop 0.6921 0.6574 0.9235 WURBAN Pop 0.9714 0.9729 0.97 equency in Freq. 4 4 4 2 2 1 1	0.971 0.9714 Area 0.6921 0.6574 0.9235 Area 0.9714 0.9729 0.97	0.9729 0.971 0.9714 2.0674 0.6921 0.6574 0.9235 2.09714 0.9729 0.97 2.097 2.097	0.6796 0.9103 <u>Clusters</u> 0.513 0.5029 0.8813 <u>Clusters</u> 0.9103 0.8862 0.6728 <u>Sprd</u> 25 25 25 25 25	0.8468 0.8946 Perimeter 0.8612 0.7683 0.3907 Perimeter 0.8946 0.8966 0.8476 Brd 25 25 25 25 25	0.9954 0.9983 Clst Size 0.8201 0.8042 0.9971 Clst Size 0.9983 0.9946 0.9881 SIRs 75 75 75 25	0.968 0.9667 Lat 0.6802 0.6476 0.9155 Lat 0.9667 0.9693 0.9653 RdGr 25 25 75 525	0.9778 0.9759 Lon 0.7105 0.6732 0.932 Lon 0.9759 0.9782 0.9756	0.0031 0.0048 Slope 0.0803 0.0624 0.0535 Slope 0.0048 0.0002 0.0006 Solution Diff 25 13	0.9335 0.9407 %Urban 0.6243 0.5848 0.8723 %Urban 0.9407 0.9386 0.9369 Sprd 25	149281875 136080000 IntSect 176866875 177631875 167461875 IntSect 136080000 134842500 148381875 Brd 25 13	731812500 702928125 <u>Union</u> 1000237500 1000316250 853706250 <u>Union</u> 702928125 709481250 736183125 <u>SIRs</u> 25	0.204 0.1936 LeeSalee 0.1768 0.1776 0.1962 LeeSalee 0.1936 0.1901 0.2016 RdGr 75	25 25 25 75	25	
10 25 2 TOP 3: Run 5 2 10 17 Run Fr Run 2 10 25 11 17 4 5 5 12	0.9729 0.971 0.9714 0.6574 0.6524 0.6524 0.9235 % URBAN Pop 0.9729 0.972 4 4 4 4 4 2 2	0.971 0.9714 Area 0.6921 0.6574 0.9235 Area 0.9714 0.9729 0.97	0.9729 0.971 0.9714 2.0674 0.6921 0.6574 0.9235 2.09714 0.9729 0.97 2.097 2.097	0.6796 0.9103 <u>Clusters</u> 0.513 0.5029 0.8813 <u>Clusters</u> 0.9103 0.8862 0.6728 <u>Sprd</u> 25 25 25 25 25	0.8468 0.8946 Perimeter 0.8612 0.7683 0.3907 Perimeter 0.8946 0.8966 0.8476 Brd 25 25 25 25 25	0.9954 0.9983 Clst Size 0.8201 0.8042 0.9971 Clst Size 0.9983 0.9946 0.9881 SIRs 75 75 75 25	0.968 0.9667 Lat 0.6802 0.6476 0.9155 Lat 0.9667 0.9693 0.9653 RdGr 25 25 75 525	0.9778 0.9759 Lon 0.7105 0.6732 0.932 Lon 0.9759 0.9782 0.9756	0.0031 0.0048 Slope 0.0803 0.0624 0.0535 Slope 0.0048 0.0002 0.0006 Solution Diff 25 13 38 25	0.9335 0.9407 %Urban 0.6243 0.5848 0.8723 %Urban 0.9407 0.9386 0.9369 Sprd 25 13 38 25	149281875 136080000 IntSect 176866875 177631875 167461875 IntSect 136080000 134842500 148381875 Brd 25 13 38 25	731812500 702928125 <u>Union</u> 1000237500 1000316250 853706250 <u>Union</u> 702928125 709481250 736183125 <u>SIRS</u> 25 13 38 25	0.204 0.1936 LeeSalee 0.1768 0.1776 0.1962 LeeSalee 0.1936 0.1901 0.2016 RdGr 75 63 88 25	25 25 75 25 75 25 76 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25	25	
10 25 1 12 15 19 19 19 19 19 19 19 19 19 19 19 19 19	0.9729 0.9710 0.9711 0.9714 SLOPE Pop 0.6921 0.6574 0.9235 % URBAN Pop 0.9714 0.9729 0.97 equency in Freq. 4 4 4 2 2 1 1 1	0.971 0.9714 Area 0.6921 0.6574 0.9235 Area 0.9714 0.9729 0.97	0.9729 0.971 0.9714 2.0674 0.6921 0.6574 0.9235 2.09714 0.9729 0.97 2.097 2.097	0.6796 0.9103 <u>Clusters</u> 0.513 0.5029 0.8813 <u>Clusters</u> 0.9103 0.8862 0.6728 <u>Sprd</u> 25 25 25 25 25	0.8468 0.8946 Perimeter 0.8612 0.7683 0.3907 Perimeter 0.8946 0.8966 0.8476 Brd 25 25 25 25 25	0.9954 0.9983 Clst Size 0.8201 0.8042 0.9971 Clst Size 0.9983 0.9946 0.9881 SIRs 75 75 75 25	0.968 0.9667 Lat 0.6802 0.6476 0.9155 Lat 0.9667 0.9693 0.9653 RdGr 25 25 75 525	0.9778 0.9759 Lon 0.7105 0.6732 0.932 Lon 0.9759 0.9756	0.0031 0.0048 Slope 0.0803 0.0624 0.0535 Slope 0.0002 0.0006 Solution Diff 25 13 38 25 2	0.9335 0.9407 %Urban 0.6243 0.5848 0.8723 %Urban 0.9407 0.9386 0.9369 Sprd 25 13 38 25 2	149281875 136080000 IntSect 176866875 177631875 167461875 IntSect 136080000 134842500 148381875 Erd 25 13 38 25 2	731812500 702928125 <u>Union</u> 1000237500 1000316250 853706250 <u>Union</u> 702928125 709481250 736183125 <u>SIRS</u> 25 13 38	0.204 0.1936 LeeSalee 0.1768 0.1776 0.1962 LeeSalee 0.1936 0.1901 0.2016 RdGr 75 63 88	25 25 75 25 75 25 76 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25	25	
10 25 2 2 TOP 3 : Run 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.9729 0.9714 SLOPE Pop 0.6921 0.6574 0.9235 % URBAN Pop 0.9714 0.9729 0.97 4 4 4 2 2 1 1 1 1 1	0.971 0.9714 Area 0.6921 0.6574 0.9235 Area 0.9714 0.9729 0.97	0.9729 0.971 0.9714 2.0674 0.6921 0.6574 0.9235 2.09714 0.9729 0.97 2.097 2.097	0.6796 0.9103 <u>Clusters</u> 0.513 0.5029 0.8813 <u>Clusters</u> 0.9103 0.8862 0.6728 <u>Sprd</u> 25 25 25 25 25	0.8468 0.8946 Perimeter 0.8612 0.7683 0.3907 Perimeter 0.8946 0.8966 0.8476 Brd 25 25 25 25 25	0.9954 0.9983 Clst Size 0.8201 0.8042 0.9971 Clst Size 0.9983 0.9946 0.9881 SIRs 75 75 75 25	0.968 0.9667 Lat 0.6802 0.6476 0.9155 Lat 0.9667 0.9693 0.9653 RdGr 25 25 75 525	0.9778 0.9759 Lon 0.7105 0.6732 0.932 Lon 0.9759 0.9756	0.0031 0.0048 Slope 0.0803 0.0624 0.0535 Slope 0.0002 0.0006 Solution Diff 25 13 38 25 2	0.9335 0.9407 %Urban 0.6243 0.5848 0.8723 %Urban 0.9407 0.9386 0.9369 Sprd 25 13 38 25	149281875 136080000 IntSect 176866875 177631875 167461875 IntSect 136080000 134842500 148381875 Erd 25 13 38 25 2	731812500 702928125 <u>Union</u> 1000237500 1000316250 853706250 <u>Union</u> 702928125 709481250 736183125 <u>SIRS</u> 25 13 38 25	0.204 0.1936 LeeSalee 0.1768 0.1776 0.1962 LeeSalee 0.1936 0.1901 0.2016 RdGr 75 63 88 25	25 25 75 25 75 25 76 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25	25	
10 25 2 2 TOP 3: Run 5 2 27 TOP 3: Run 17 2 10 17 4 5 12 15 19 20 27	0.9729 0.971 0.9714 0.6574 0.9235 % URBAN POP 0.9714 0.9729 0.97 4 4 4 2 2 1 1 1 1 1 1	0.971 0.9714 Area 0.6921 0.6574 0.9235 Area 0.9714 0.9729 0.97	0.9729 0.971 0.9714 2.0674 0.6921 0.6574 0.9235 2.09714 0.9729 0.97 2.097 2.097	0.6796 0.9103 <u>Clusters</u> 0.513 0.5029 0.8813 <u>Clusters</u> 0.9103 0.8862 0.6728 <u>Sprd</u> 25 25 25 25 25	0.8468 0.8946 Perimeter 0.8612 0.7683 0.3907 Perimeter 0.8946 0.8966 0.8476 Brd 25 25 25 25 25	0.9954 0.9983 Clst Size 0.8201 0.8042 0.9971 Clst Size 0.9983 0.9946 0.9881 SIRs 75 75 75 25	0.968 0.9667 Lat 0.6802 0.6476 0.9155 Lat 0.9667 0.9693 0.9653 RdGr 25 25 75 525	0.9778 0.9759 Lon 0.7105 0.6732 0.932 Lon 0.9759 0.9756	0.0031 0.0048 Slope 0.0803 0.0624 0.0535 Slope 0.0002 0.0006 Solution Diff 25 13 38 25 2	0.9335 0.9407 %Urban 0.6243 0.5848 0.8723 %Urban 0.9407 0.9386 0.9369 Sprd 25 13 38 25 2	149281875 136080000 IntSect 176866875 177631875 167461875 IntSect 136080000 134842500 148381875 Erd 25 13 38 25 2	731812500 702928125 <u>Union</u> 1000237500 1000316250 853706250 <u>Union</u> 702928125 709481250 736183125 <u>SIRS</u> 25 13 38 25	0.204 0.1936 LeeSalee 0.1768 0.1776 0.1962 LeeSalee 0.1936 0.1901 0.2016 RdGr 75 63 88 25	25 25 75 25 75 25 76 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25	25	
10 25 2 2 TOP 3 : Run 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.9729 0.9714 SLOPE Pop 0.6921 0.6574 0.9235 % URBAN Pop 0.9714 0.9729 0.97 4 4 4 2 2 1 1 1 1 1	0.971 0.9714 Area 0.6921 0.6574 0.9235 Area 0.9714 0.9729 0.97	0.9729 0.971 0.9714 2.0674 0.6921 0.6574 0.9235 2.09714 0.9729 0.97 2.097 2.097	0.6796 0.9103 <u>Clusters</u> 0.513 0.5029 0.8813 <u>Clusters</u> 0.9103 0.8862 0.6728 <u>Sprd</u> 25 25 25 25 25	0.8468 0.8946 Perimeter 0.8612 0.7683 0.3907 Perimeter 0.8946 0.8966 0.8476 Brd 25 25 25 25 25	0.9954 0.9983 Clst Size 0.8201 0.8042 0.9971 Clst Size 0.9983 0.9946 0.9881 SIRs 75 75 75 25	0.968 0.9667 Lat 0.6802 0.6476 0.9155 Lat 0.9667 0.9693 0.9653 RdGr 25 25 75 525	0.9778 0.9759 Lon 0.7105 0.6732 0.932 Lon 0.9759 0.9756	0.0031 0.0048 Slope 0.0803 0.0624 0.0535 Slope 0.0002 0.0006 Solution Diff 25 13 38 25 2	0.9335 0.9407 %Urban 0.6243 0.5848 0.8723 %Urban 0.9407 0.9386 0.9369 Sprd 25 13 38 25 2	149281875 136080000 IntSect 176866875 177631875 167461875 IntSect 136080000 134842500 148381875 Erd 25 13 38 25 2	731812500 702928125 <u>Union</u> 1000237500 1000316250 853706250 <u>Union</u> 702928125 709481250 736183125 <u>SIRS</u> 25 13 38 25	0.204 0.1936 LeeSalee 0.1768 0.1776 0.1962 LeeSalee 0.1936 0.1901 0.2016 RdGr 75 63 88 25	25 25 75 25 75 25 76 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25	25	
10 25 2 2 TOP 3 Run 5 2 2 7 TOP 3 Run 1 7 2 10 17 17 4 5 12 15 19 20 7 28 2 2 9 3 3 1	0.9729 0.9710 0.9714 0.9521 0.6574 0.9235 % URBAN POP 0.9714 0.9729 0.9729 4 4 4 4 2 2 1 1 1 1 1 1 1 1 1 1 1 1	0.971 0.9714 Area 0.6921 0.6574 0.9235 Area 0.9714 0.9729 0.97	0.9729 0.971 0.9714 2.0674 0.6921 0.6574 0.9235 2.09714 0.9729 0.97 2.097 2.097	0.6796 0.9103 <u>Clusters</u> 0.513 0.5029 0.8813 <u>Clusters</u> 0.9103 0.8862 0.6728 <u>Sprd</u> 25 25 25 25 25	0.8468 0.8946 Perimeter 0.8612 0.7683 0.3907 Perimeter 0.8946 0.8966 0.8476 Brd 25 25 25 25 25	0.9954 0.9983 Clst Size 0.8201 0.8042 0.9971 Clst Size 0.9983 0.9946 0.9881 SIRs 75 75 75 25	0.968 0.9667 Lat 0.6802 0.6476 0.9155 Lat 0.9667 0.9693 0.9653 RdGr 25 25 75 525	0.9778 0.9759 Lon 0.7105 0.6732 0.932 Lon 0.9759 0.9756	0.0031 0.0048 Slope 0.0803 0.0624 0.0535 Slope 0.0002 0.0006 Solution Diff 25 13 38 25 2	0.9335 0.9407 %Urban 0.6243 0.5848 0.8723 %Urban 0.9407 0.9386 0.9369 Sprd 25 13 38 25 2	149281875 136080000 IntSect 176866875 177631875 167461875 IntSect 136080000 134842500 148381875 Erd 25 13 38 25 2	731812500 702928125 <u>Union</u> 1000237500 1000316250 853706250 <u>Union</u> 702928125 709481250 736183125 <u>SIRS</u> 25 13 38 25	0.204 0.1936 LeeSalee 0.1768 0.1776 0.1962 LeeSalee 0.1936 0.1901 0.2016 RdGr 75 63 88 25	25 25 75 25 75 25 76 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25	25	
10 25 2 2 TOP 3 : Run 5 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.9729 0.971 0.9714 SLOPE Pop 0.6921 0.6524 0.9235 % URBAN Pop 0.9714 4 4 4 2 2 1 1 1 1 1 1 1 1 1	0.971 0.9714 Area 0.6921 0.6574 0.9235 Area 0.9714 0.9729 0.97	0.9729 0.971 0.9714 2.0674 0.6921 0.6574 0.9235 2.09714 0.9729 0.97 2.097 2.097	0.6796 0.9103 <u>Clusters</u> 0.513 0.5029 0.8813 <u>Clusters</u> 0.9103 0.8862 0.6728 <u>Sprd</u> 25 25 25 25 25	0.8468 0.8946 Perimeter 0.8612 0.7683 0.3907 Perimeter 0.8946 0.8966 0.8476 Brd 25 25 25 25 25	0.9954 0.9983 Clst Size 0.8201 0.8042 0.9971 Clst Size 0.9983 0.9946 0.9881 SIRs 75 75 75 25	0.968 0.9667 Lat 0.6802 0.6476 0.9155 Lat 0.9667 0.9693 0.9653 RdGr 25 25 75 525	0.9778 0.9759 Lon 0.7105 0.6732 0.932 Lon 0.9759 0.9756	0.0031 0.0048 Slope 0.0803 0.0624 0.0535 Slope 0.0002 0.0006 Solution Diff 25 13 38 25 2	0.9335 0.9407 %Urban 0.6243 0.5848 0.8723 %Urban 0.9407 0.9386 0.9369 Sprd 25 13 38 25 2	149281875 136080000 IntSect 176866875 177631875 167461875 IntSect 136080000 134842500 148381875 Erd 25 13 38 25 2	731812500 702928125 <u>Union</u> 1000237500 1000316250 853706250 <u>Union</u> 702928125 709481250 736183125 <u>SIRS</u> 25 13 38 25	0.204 0.1936 LeeSalee 0.1768 0.1776 0.1962 LeeSalee 0.1936 0.1901 0.2016 RdGr 75 63 88 25	25 25 75 25 75 25 76 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25 77 25	25	

TOP 2	LEESALEE														
				01	D1 1	01-4 01			01	0/11-6	1-101		0 - 1	D''' 0	D-1 0ID- D-10-
Run		Area			Perimeter	Cist Size	Lat	Lon		%Urban		Union			Brd SIRs RdGr
5	0.9487	0.9487	0.9487		0.8919		0.9435	0.958	0.0761		160486875		0.2069		13 13 63
12	0.9825	0.9825	0.9825	0.0062	0.9336	0.9855	0.979	0.986	0.006	0.9795	110255625	538509375	0.2047	38 13	38 38 63
27	0.9861	0.9861	0.9861	0.1892	0.9708	0.99	0.9843	0.9902	0.0047	0.9813	101362500	495056250	0.2047	13 13	38 38 88
														13 13	38 38 63
TOP 3	AREA														
	Pop	Aros	Compare	Cluetore	Perimeter	Clet Size	Lat	Lon	Slope	%Urban	IntSect	Union	I agealag	Diff Sprd	Brd SIRs RdGr
10	0.99	Area 0.99	0.99		0.9925			Lon 0.9929	0.005	0.9886		423078750	0.2025		13 38 63
26	0.989	0.989	0.989		0.9912			0.9918	0	0.9844		412706250	0.2035		13 38 88
18	0.9888	0.9888	0.9888	0.8573	0.9889	0.9966	0.9887	0.9923	0.0027	0.9844	82158750	416160000	0.1974	38 13	13 13 88
														38 13	13 38 88
TOP 3	CLUSTER														
	Pop	Area	Compare	Clusters	Perimeter	Clst Size	l at	Lon	Slone	%Urban	IntSect	Union	I eeSalee	Diff Sprd	Brd SIRs RdGr
25	0.9848	0.9848	0.9848		0.9876			0.9865	0.0034		77293125		0.2007		13 38 88
14	0.9416	0.9416	0.9416		0.8034			0.9492	0.0035		164148750		0.1913		13 38 63
1	0.9884	0.9884	0.9884	0.8843	0.9902	0.9966	0.9824	0.9879	0.0001	0.9831	78249375	387258750	0.2021	13 13	13 13 63
														13 13	13 38 63
TOP 3	CLUSTER	PERIMETER	₹												
Run	Pop	Area	Compare	Clusters	Perimeter	Clst Size	Lat	Lon	Slope	%Urban	IntSect	Union	LeeSalee	Diff Sprd	Brd SIRs RdGr
10	0.99	0.99	0.99		0.9925		0.9895	0.9929	0.005	0.9886		423078750	0.2025		13 38 63
26	0.989	0.989	0.989		0.9912		0.9867		0.003	0.9844		412706250	0.2025		
									-						
1	0.9884	0.9884	0.9884	0.8843	0.9902	0.9966	0.9824	0.9879	0.0001	0.9831	78249375	387258750	0.2021		13 13 63
														38 13	13 38 63
TOP 3	CLUSTER	SIZE													
Run	Pop	Area	Compare	Clusters	Perimeter	Clst Size	Lat	Lon	Slope	%Urban	IntSect	Union	LeeSalee	Diff Sprd	Brd SIRs RdGr
30	0.9444	0.9444	0.9444		0.8358			0.9526	0.0329	0.9306	164475000		0.1944	38 38	13 38 88
13	0.9513	0.9513	0.9513		0.8839			0.9598	0.027		161060625		0.2013		13 38 63
5															
5	0.9487	0.9487	0.9487	0.6469	0.8919	0.9982	0.9435	0.958	0.0761	0.9392	160486875	775625625	0.2069		13 13 63
														13 38	13 38 63
TOP 3	HORIZONT	AL ALIGNN	IENT												
Run	Pop	Area	Compare	Clusters	Perimeter	Clst_Size	Lat	Lon	Slope	%Urban	IntSect	Union	LeeSalee	Diff Sprd	Brd SIRs RdGr
10	0.99	0.99	0.99	0.8298	0.9925	0.997	0.9895	0.9929	0.005	0.9886	85691250	423078750	0.2025	38 13	13 38 63
18	0.9888	0.9888	0.9888		0.9889			0.9923	0.0027	0.9844		416160000	0.1974		13 13 88
26			0.989						0.0027				0.2035		
20	0.989	0.989	0.969	0.6416	0.9912	0.9923	0.9007	0.9918	U	0.9644	83970000	412700250			
														38 13	13 38 88
TOP 3	VERTICAL	ALIGNMEN	Т												
Run	Pop	Area	Compare	Clusters	Perimeter	Clst Size	Lat	Lon	Slope	%Urban	IntSect	Union	LeeSalee	Diff Sprd	Brd SIRs RdGr
10	0.99	0.99	0.99	0.8298	0.9925	0.997	0.9895	0.9929	0.005	0.9886	85691250	423078750	0.2025	38 13	13 38 63
18	0.9888	0.9888	0.9888	0.8573	0.9889			0.9923	0.0027	0.9844		416160000	0.1974		13 13 88
26	0.989	0.989	0.989		0.9912			0.9918	0.0027		83970000		0.2035		13 38 88
20	0.505	0.505	0.505	0.0410	0.0012	0.0020	0.0001	0.0010	·	0.5044	0007 0000	412700200		38 13	13 38 88
TOD 2	SLOPE													30 13	13 30 00
		_	_												
Run					Perimeter			Lon	Slope	%Urban		<u>Union</u>			Brd SIRs RdGr
31	0.8855	0.8855	0.8855	0.8189	0.5808	0.9846	0.8788	0.8984	0.3289	0.8674	174048750	895888125	0.1943		38 38 88
15	0.8937	0.8937	0.0000										0.1040	13 38	00 00 00
8		0.0937	0.8937		0.5975	0.9904	0.886	0.9036	0.3222		173283750	892006875	0.1943		38 38 63
	0.8743	0.8743	0.8937	0.8178						0.8884	173283750		0.1943	13 38	38 38 63
	0.8743			0.8178	0.5975 0.5322			0.9036 0.8873	0.3222 0.2691	0.8884				13 38 38 38	38 38 63 38 13 63
TOP 2			0.8937	0.8178						0.8884	173283750		0.1943	13 38	38 38 63
	% URBAN	0.8743	0.8937 0.8743	0.8178 0.767	0.5322	0.9821	0.8691	0.8873	0.2691	0.8884 0.856	173283750 172918125	928946250	0.1943 0.1861	13 38 38 38 13 38	38 38 63 38 13 63 38 38 63
Run	% URBAN Pop	0.8743	0.8937 0.8743 Compare	0.8178 0.767 <u>Clusters</u>	0.5322 Perimeter	0.9821 Clst Size	0.8691 Lat	0.8873	0.2691 Slope	0.8884 0.856 %Urban	173283750 172918125 IntSect	928946250 <u>Union</u>	0.1943 0.1861 LeeSalee	13 38 38 38 13 38 Diff Sprd	38 38 63 38 13 63 38 38 63 Brd SIRs RdGr
	% URBAN	0.8743 Area 0.99	0.8937 0.8743	0.8178 0.767 <u>Clusters</u>	0.5322	0.9821 Clst Size	0.8691 Lat	0.8873	0.2691 Slope 0.005	0.8884 0.856 <u>%Urban</u> 0.9886	173283750 172918125 IntSect 85691250	928946250	0.1943 0.1861 LeeSalee 0.2025	13 38 38 38 13 38 Diff Sprd 38 13	38 38 63 38 13 63 38 38 63 Brd SIRs RdGr 13 38 63
Run	% URBAN Pop	0.8743	0.8937 0.8743 Compare	0.8178 0.767 <u>Clusters</u> 0.8298	0.5322 Perimeter	0.9821 <u>Clst Size</u> 0.997	0.8691 <u>Lat</u> 0.9895	0.8873	0.2691 Slope 0.005	0.8884 0.856 %Urban	173283750 172918125 IntSect 85691250	928946250 <u>Union</u>	0.1943 0.1861 LeeSalee	13 38 38 38 13 38 Diff Sprd 38 13	38 38 63 38 13 63 38 38 63 Brd SIRs RdGr
<u>Run</u> 10	% URBAN Pop 0.99 0.9886	0.8743 <u>Area</u> 0.99 0.9886	0.8937 0.8743 <u>Compare</u> 0.99 0.9886	0.8178 0.767 <u>Clusters</u> 0.8298 0.8316	0.5322 Perimeter 0.9925 0.9872	0.9821 Clst Size 0.997 0.9975	0.8691 <u>Lat</u> 0.9895 0.9861	0.8873 <u>Lon</u> 0.9929 0.9917	0.2691 Slope 0.005 0.0001	0.8884 0.856 %Urban 0.9886 0.9886	173283750 172918125 IntSect 85691250 85151250	928946250 <u>Union</u> 423078750 421115625	0.1943 0.1861 LeeSalee 0.2025 0.2022	13 38 38 38 13 38 Diff Sprd 38 13 38 13	38 38 63 38 13 63 38 38 63 Brd SIRs RdGr 13 38 63 13 13 63
Run 10 2	% URBAN Pop 0.99	0.8743 Area 0.99	0.8937 0.8743 <u>Compare</u> 0.99	0.8178 0.767 <u>Clusters</u> 0.8298 0.8316	0.5322 Perimeter 0.9925	0.9821 Clst Size 0.997 0.9975	0.8691 <u>Lat</u> 0.9895 0.9861	0.8873 <u>Lon</u> 0.9929	0.2691 Slope 0.005 0.0001	0.8884 0.856 %Urban 0.9886 0.9886	173283750 172918125 IntSect 85691250 85151250	928946250 <u>Union</u> 423078750	0.1943 0.1861 LeeSalee 0.2025	13 38 38 38 13 38 13 38 13 38 13 38 13	38 38 63 38 13 63 38 38 63 Brd SIRs RdGr 13 38 63 13 13 63 13 13 88
Run 10 2	% URBAN Pop 0.99 0.9886	0.8743 Area 0.99 0.9886	0.8937 0.8743 <u>Compare</u> 0.99 0.9886	0.8178 0.767 <u>Clusters</u> 0.8298 0.8316	0.5322 Perimeter 0.9925 0.9872	0.9821 Clst Size 0.997 0.9975	0.8691 <u>Lat</u> 0.9895 0.9861	0.8873 <u>Lon</u> 0.9929 0.9917	0.2691 Slope 0.005 0.0001	0.8884 0.856 %Urban 0.9886 0.9886	173283750 172918125 IntSect 85691250 85151250	928946250 <u>Union</u> 423078750 421115625	0.1943 0.1861 LeeSalee 0.2025 0.2022	13 38 38 38 13 38 Diff Sprd 38 13 38 13	38 38 63 38 13 63 38 38 63 Brd SIRs RdGr 13 38 63 13 13 63
Run 10 2 18	% URBAN Pop 0.99 0.9886 0.9888	0.8743 Area 0.99 0.9886 0.9888	0.8937 0.8743 <u>Compare</u> 0.99 0.9886	0.8178 0.767 <u>Clusters</u> 0.8298 0.8316	0.5322 Perimeter 0.9925 0.9872	0.9821 Clst Size 0.997 0.9975	0.8691 <u>Lat</u> 0.9895 0.9861	0.8873 <u>Lon</u> 0.9929 0.9917	0.2691 Slope 0.005 0.0001 0.0027	0.8884 0.856 %Urban 0.9886 0.9886	173283750 172918125 IntSect 85691250 85151250	928946250 <u>Union</u> 423078750 421115625	0.1943 0.1861 LeeSalee 0.2025 0.2022	13 38 38 38 13 38 13 38 13 38 13 38 13	38 38 63 38 13 63 38 38 63 Brd SIRs RdGr 13 38 63 13 13 63 13 13 88
Run 10 2 18 Run Fi	% URBAN Pop 0.99 0.9886 0.9888	0.8743 Area 0.99 0.9886 0.9888	0.8937 0.8743 <u>Compare</u> 0.99 0.9886 0.9888	0.8178 0.767 <u>Clusters</u> 0.8298 0.8316 0.8573	0.5322 Perimeter 0.9925 0.9872 0.9889	0.9821 Clst Size 0.997 0.9975 0.9966	0.8691 <u>Lat</u> 0.9895 0.9861 0.9887	0.8873 <u>Lon</u> 0.9929 0.9917	0.2691 Slope 0.005 0.0001 0.0027 Solution	0.8884 0.856 <u>%Urban</u> 0.9886 0.9886 0.9844	173283750 172918125 IntSect 85691250 85151250 82158750	928946250 <u>Union</u> 423078750 421115625 416160000	0.1943 0.1861 LeeSalee 0.2025 0.2022 0.1974	13 38 38 38 13 38 13 38 13 38 13 38 13	38 38 63 38 13 63 38 38 63 Brd SIRs RdGr 13 38 63 13 13 63 13 13 88
Run 10 2 18 Run Fr	% URBAN Pop 0.99 0.9886 0.9888 requency in Freq.	0.8743 Area 0.99 0.9886 0.9888	0.8937 0.8743 <u>Compare</u> 0.99 0.9886 0.9888	0.8178 0.767 <u>Clusters</u> 0.8298 0.8316 0.8573	0.5322 Perimeter 0.9925 0.9872 0.9889 Brd	0.9821 <u>CIst Size</u> 0.997 0.9975 0.9966	0.8691 <u>Lat</u> 0.9895 0.9861 0.9887	0.8873 <u>Lon</u> 0.9929 0.9917	0.2691 Slope 0.005 0.0001 0.0027 Solution Diff	0.8884 0.856 <u>%Urban</u> 0.9886 0.9886 0.9844 <u>Sprd</u>	173283750 172918125 IntSect 85691250 85151250 82158750 Brd	928946250 <u>Union</u> 423078750 421115625 416160000	0.1943 0.1861 LeeSalee 0.2025 0.2022 0.1974	13 38 38 38 13 38 13 38 13 38 13 38 13	38 38 63 38 13 63 38 38 63 Brd SIRs RdGr 13 38 63 13 13 63 13 13 88
Run Fi Run Fi Run 10	% URBAN Pop 0.99 0.9886 0.9888 requency in Freq. 5	0.8743 Area 0.99 0.9886 0.9888	0.8937 0.8743 Compare 0.99 0.9886 0.9888	0.8178 0.767 Clusters 0.8298 0.8316 0.8573 Sprd 13	0.5322 Perimeter 0.9925 0.9872 0.9889 Brd 13	0.9821 Clst Size	0.8691 Lat 0.9895 0.9861 0.9887 RdGr 63	0.8873 <u>Lon</u> 0.9929 0.9917	0.2691 Slope 0.005 0.0001 0.0027 Solution	0.8884 0.856 <u>%Urban</u> 0.9886 0.9886 0.9844	173283750 172918125 IntSect 85691250 85151250 82158750	928946250 <u>Union</u> 423078750 421115625 416160000	0.1943 0.1861 LeeSalee 0.2025 0.2022 0.1974	13 38 38 38 13 38 13 38 13 38 13 38 13	38 38 63 38 13 63 38 38 63 Brd SIRs RdGr 13 38 63 13 13 63 13 13 88
Run 10 2 18 Run Fr	% URBAN Pop 0.99 0.9886 0.9888 requency in Freq.	0.8743 Area 0.99 0.9886 0.9888	0.8937 0.8743 <u>Compare</u> 0.99 0.9886 0.9888	0.8178 0.767 Clusters 0.8298 0.8316 0.8573 Sprd 13	0.5322 Perimeter 0.9925 0.9872 0.9889 Brd	0.9821 <u>CIst Size</u> 0.997 0.9975 0.9966	0.8691 <u>Lat</u> 0.9895 0.9861 0.9887	0.8873 <u>Lon</u> 0.9929 0.9917	0.2691 Slope 0.005 0.0001 0.0027 Solution Diff	0.8884 0.856 <u>%Urban</u> 0.9886 0.9886 0.9844 <u>Sprd</u>	173283750 172918125 IntSect 85691250 85151250 82158750 Brd	928946250 <u>Union</u> 423078750 421115625 416160000	0.1943 0.1861 LeeSalee 0.2025 0.2022 0.1974	13 38 38 38 13 38 13 38 13 38 13 38 13	38 38 63 38 13 63 38 38 63 Brd SIRs RdGr 13 38 63 13 13 63 13 13 88
Run Fr Run Fr Run 10 10 18	% URBAN Pop 0.99 0.9886 0.9888 requency in Freq. 5 4	0.8743 Area 0.99 0.9886 0.9888	0.8937 0.8743 Compare 0.99 0.9886 0.9888	0.8178 0.767 Clusters 0.8298 0.8316 0.8573 Sprd 13 13	0.5322 Perimeter 0.9925 0.9872 0.9889 Brd 13 13	0.9821 Clst Size 0.997 0.9975 0.9966 SIRs 38 13	0.8691 <u>Lat</u> 0.9895 0.9861 0.9887 <u>RdGr</u> 63 88	0.8873 <u>Lon</u> 0.9929 0.9917	0.2691 Slope 0.005 0.0001 0.0027 Solution Diff	0.8884 0.856 <u>%Urban</u> 0.9886 0.9886 0.9844 <u>Sprd</u>	173283750 172918125 IntSect 85691250 85151250 82158750 Brd	928946250 <u>Union</u> 423078750 421115625 416160000	0.1943 0.1861 LeeSalee 0.2025 0.2022 0.1974	13 38 38 38 13 38 13 38 13 38 13 38 13	38 38 63 38 13 63 38 38 63 Brd SIRs RdGr 13 38 63 13 13 63 13 13 88
Run Fr Run Fr Run 10 10 18 26	% URBAN Pop 0.99 0.9886 0.9888 requency in Freq. 5 4 4	0.8743 Area 0.99 0.9886 0.9888	0.8937 0.8743 Compare 0.99 0.9886 0.9888 Diff 38 38 38	0.8178 0.767 Clusters 0.8298 0.8316 0.8573 Sprd 13 13 13	0.5322 Perimeter 0.9925 0.9872 0.9889 Brd 13 13 13	0.9821 Clst Size 0.997 0.9975 0.9966 SIRs 38 13 38	0.8691 Lat 0.9895 0.9861 0.9887 RdGr 63 88 88	0.8873 <u>Lon</u> 0.9929 0.9917	0.2691 Slope 0.005 0.0001 0.0027 Solution Diff 13	0.8884 0.856 <u>%Urban</u> 0.9886 0.9844 <u>Sprd</u> 13	173283750 172918125 IntSect 85691250 85151250 82158750 Brd 13	928946250 <u>Union</u> 423078750 421115625 416160000 <u>SIRS</u> 38	0.1943 0.1861 LeeSalee 0.2025 0.2022 0.1974 RdGr 63	13 38 38 38 13 38 13 38 13 38 13 38 13	38 38 63 38 13 63 38 38 63 Brd SIRs RdGr 13 38 63 13 13 63 13 13 88
Run Fr Run Fr Run 10 10 18 26 1	% URBAN Pop 0.99 0.9886 0.9888 requency in Freq. 5 4 4 2	0.8743 Area 0.99 0.9886 0.9888	0.8937 0.8743 Compare 0.99 0.9886 0.9888 Diff 38 38 38 38	0.8178 0.767 Clusters 0.8298 0.8316 0.8573 Sprd 13 13 13 13 13	0.5322 Perimeter 0.9925 0.9872 0.9889 Brd 13 13 13 13 13	0.9821 Clst Size 0.997 0.9975 0.9966 SIRs 38 13 388 13 388 13	0.8691 Lat 0.9895 0.9861 0.9887 RdGr 63 88 88 63	0.8873 <u>Lon</u> 0.9929 0.9917	0.2691 Slope 0.005 0.0001 0.0027 Solution Diff 13 7	0.8884 0.856 %Urban 0.9886 0.9886 0.9844 Sprd 13	173283750 172918125 IntSect 85691250 85151250 82158750 Brd 13 7	928946250 <u>Union</u> 423078750 421115625 416160000 <u>SIRs</u> 38 32	0.1943 0.1861 LeeSalee 0.2025 0.2022 0.1974 RdGr 63 57	13 38 38 38 13 38 13 38 13 38 13 38 13 38 13 38 13	38 38 63 38 13 63 38 38 63 Brd SIRs RdGr 13 38 63 13 13 63 13 13 88
Run Fr Run Fr Run Fr Run 10 18 26 1	% URBAN Pop 0.99 0.9886 0.9888 requency in Freq. 5 4 4 2 2	0.8743 Area 0.99 0.9886 0.9888	0.8937 0.8743 Compare 0.99 0.9886 0.9888 Diff 38 38 38	0.8178 0.767 Clusters 0.8298 0.8316 0.8573 Sprd 13 13 13	0.5322 Perimeter 0.9925 0.9872 0.9889 Brd 13 13 13	0.9821 Clst Size 0.997 0.9975 0.9966 SIRs 38 13 38	0.8691 Lat 0.9895 0.9861 0.9887 RdGr 63 88 88	0.8873 <u>Lon</u> 0.9929 0.9917	0.2691 Slope 0.005 0.0001 0.0027 Solution Diff 13	0.8884 0.856 <u>%Urban</u> 0.9886 0.9844 <u>Sprd</u> 13	173283750 172918125 IntSect 85691250 85151250 82158750 Brd 13	928946250 <u>Union</u> 423078750 421115625 416160000 <u>SIRS</u> 38	0.1943 0.1861 LeeSalee 0.2025 0.2022 0.1974 RdGr 63	13 38 38 38 13 38 13 38 13 38 13 38 13	38 38 63 38 13 63 38 38 63 Brd SIRs RdGr 13 38 63 13 13 63 13 13 88
Run Fi Run Fi Run 6 10 10 10 18 26 1 5	% URBAN Pop 0.99 0.9886 0.9888 requency in Freq. 5 4 4 2 2 1	0.8743 Area 0.99 0.9886 0.9888	0.8937 0.8743 Compare 0.99 0.9886 0.9888 Diff 38 38 38 38	0.8178 0.767 Clusters 0.8298 0.8316 0.8573 Sprd 13 13 13 13 13	0.5322 Perimeter 0.9925 0.9872 0.9889 Brd 13 13 13 13 13	0.9821 Clst Size 0.997 0.9975 0.9966 SIRs 38 13 388 13 388 13	0.8691 Lat 0.9895 0.9861 0.9887 RdGr 63 88 88 63	0.8873 <u>Lon</u> 0.9929 0.9917	0.2691 Slope 0.005 0.0001 0.0027 Solution Diff 13 7 19	0.8884 0.856 %Urban 0.9886 0.9886 0.9844 Sprd 13 7	173283750 172918125 IntSect 85691250 82158750 Brd 13 7 19	928946250 <u>Union</u> 423078750 421115625 416160000 <u>SIRs</u> 38 32 44	0.1943 0.1861 LeeSalee 0.2025 0.2022 0.1974 RdGr 63 57	13 38 38 38 13 38 Diff Sprd 38 13 38 13 38 13 Start End	38 38 63 38 13 63 38 38 63 Brd SIRs RdGr 13 38 63 13 13 63 13 13 88
Run F1 Run 10 18 26 1 5 2 8	% URBAN Pop 0.99 0.9886 0.9888 requency in Freq. 5 4 4 2 2 1 1	0.8743 Area 0.99 0.9886 0.9888	0.8937 0.8743 Compare 0.99 0.9886 0.9888 Diff 38 38 38 38	0.8178 0.767 Clusters 0.8298 0.8316 0.8573 Sprd 13 13 13 13 13	0.5322 Perimeter 0.9925 0.9872 0.9889 Brd 13 13 13 13 13	0.9821 Clst Size 0.997 0.9975 0.9966 SIRs 38 13 388 13 388 13	0.8691 Lat 0.9895 0.9861 0.9887 RdGr 63 88 88 63	0.8873 <u>Lon</u> 0.9929 0.9917	0.2691 Slope 0.005 0.0001 0.0027 Solution Diff 13 7	0.8884 0.856 %Urban 0.9886 0.9886 0.9844 Sprd 13	173283750 172918125 IntSect 85691250 85151250 82158750 Brd 13 7	928946250 <u>Union</u> 423078750 421115625 416160000 <u>SIRs</u> 38 32	0.1943 0.1861 LeeSalee 0.2025 0.2022 0.1974 RdGr 63 57	13 38 38 38 13 38 13 38 13 38 13 38 13 38 13 38 13	38 38 63 38 13 63 38 38 63 Brd SIRs RdGr 13 38 63 13 13 63 13 13 88
Run Fi Run Fi Run 6 10 10 10 18 26 1 5	% URBAN Pop 0.99 0.9886 0.9888 requency in Freq. 5 4 4 2 2 1	0.8743 Area 0.99 0.9886 0.9888	0.8937 0.8743 Compare 0.99 0.9886 0.9888 Diff 38 38 38 38	0.8178 0.767 Clusters 0.8298 0.8316 0.8573 Sprd 13 13 13 13 13	0.5322 Perimeter 0.9925 0.9872 0.9889 Brd 13 13 13 13 13	0.9821 Clst Size 0.997 0.9975 0.9966 SIRs 38 13 388 13 388 13	0.8691 Lat 0.9895 0.9861 0.9887 RdGr 63 88 88 63	0.8873 <u>Lon</u> 0.9929 0.9917	0.2691 Slope 0.005 0.0001 0.0027 Solution Diff 13 7 19	0.8884 0.856 %Urban 0.9886 0.9886 0.9844 Sprd 13 7	173283750 172918125 IntSect 85691250 82158750 Brd 13 7 19	928946250 <u>Union</u> 423078750 421115625 416160000 <u>SIRs</u> 38 32 44	0.1943 0.1861 LeeSalee 0.2025 0.2022 0.1974 RdGr 63 57	13 38 38 38 13 38 Diff Sprd 38 13 38 13 38 13 Start End	38 38 63 38 13 63 38 38 63 Brd SIRs RdGr 13 38 63 13 13 63 13 13 88
Run F1 Run 10 18 26 1 5 2 8	% URBAN Pop 0.99 0.9886 0.9888 requency in Freq. 5 4 4 2 2 1 1	0.8743 Area 0.99 0.9886 0.9888	0.8937 0.8743 Compare 0.99 0.9886 0.9888 Diff 38 38 38 38	0.8178 0.767 Clusters 0.8298 0.8316 0.8573 Sprd 13 13 13 13 13	0.5322 Perimeter 0.9925 0.9872 0.9889 Brd 13 13 13 13 13	0.9821 Clst Size 0.997 0.9975 0.9966 SIRs 38 13 388 13 388 13	0.8691 Lat 0.9895 0.9861 0.9887 RdGr 63 88 88 63	0.8873 <u>Lon</u> 0.9929 0.9917	0.2691 Slope 0.005 0.0001 0.0027 Solution Diff 13 7 19	0.8884 0.856 %Urban 0.9886 0.9886 0.9844 Sprd 13 7	173283750 172918125 IntSect 85691250 82158750 Brd 13 7 19	928946250 <u>Union</u> 423078750 421115625 416160000 <u>SIRs</u> 38 32 44	0.1943 0.1861 LeeSalee 0.2025 0.2022 0.1974 RdGr 63 57	13 38 38 38 13 38 Diff Sprd 38 13 38 13 38 13 Start End Step	38 38 63 38 13 63 38 38 63 Brd SIRs RdGr 13 38 63 13 13 63 13 13 88
Run F1 Run F1 Run 10 18 26 1 5 2 8 12	% URBAN Pop 0.99 0.9886 0.9888 requency in Freg. 5 4 4 2 2 1 1 1	0.8743 Area 0.99 0.9886 0.9888	0.8937 0.8743 Compare 0.99 0.9886 0.9888 Diff 38 38 38 38	0.8178 0.767 Clusters 0.8298 0.8316 0.8573 Sprd 13 13 13 13 13	0.5322 Perimeter 0.9925 0.9872 0.9889 Brd 13 13 13 13 13	0.9821 Clst Size 0.997 0.9975 0.9966 SIRs 38 13 388 13 388 13	0.8691 Lat 0.9895 0.9861 0.9887 RdGr 63 88 88 63	0.8873 <u>Lon</u> 0.9929 0.9917	0.2691 Slope 0.005 0.0001 0.0027 Solution Diff 13 7 19 12	0.8884 0.856 <u>%Urban</u> 0.9886 0.9886 0.9844 <u>Sprd</u> 13 7 19	173283750 172918125 IntSect 85691250 85151250 82158750 Brd 13 7 19	928946250 <u>Union</u> 423078750 421115625 416160000 <u>SIRs</u> 38 32 44 12	0.1943 0.1861 LeeSalee 0.2025 0.2022 0.1974 RdGr 63 57 69	13 38 38 38 13 38 Diff Sprd 38 13 38 13 38 13 Start End Step	38 38 63 38 13 63 38 63 38 63 38 63 13 13 63 13 13 63 13 13 63
Run Fi Run Fi Run Fi Run 10 18 26 1 1 5 2 8 12 13 13	% URBAN Pop 0.99 0.9886 0.9888 requency in Freq. 5 4 4 2 2 1 1 1 1	0.8743 Area 0.99 0.9886 0.9888	0.8937 0.8743 Compare 0.99 0.9886 0.9888 Diff 38 38 38 38	0.8178 0.767 Clusters 0.8298 0.8316 0.8573 Sprd 13 13 13 13 13	0.5322 Perimeter 0.9925 0.9872 0.9889 Brd 13 13 13 13 13	0.9821 Clst Size 0.997 0.9975 0.9966 SIRs 38 13 388 13 388 13	0.8691 Lat 0.9895 0.9861 0.9887 RdGr 63 88 88 63	0.8873 <u>Lon</u> 0.9929 0.9917 0.9923	0.2691 Slope 0.005 0.0001 0.0027 Solution Diff 13 7 19 12 2	0.8884 0.856 <u>%Urban</u> 0.9886 0.9886 0.9844 <u>Sprd</u> 13 7 19 12 2	173283750 172918125 IntSect 85691250 85151250 82158750 Brd 13 7 19 12 2	928946250 <u>Union</u> 423078750 421115625 416160000 <u>SIRs</u> 38 32 44 12	0.1943 0.1861 LeeSalee 0.2025 0.2022 0.1974 RdGr 63 57 69	13 38 38 38 13 38 Diff Sprd 38 13 38 13 38 13 Start End Step	38 38 63 38 13 63 38 63 38 63 38 63 13 13 63 13 13 63 13 13 63
Run Fr Run Fr Run F Run 100 18 26 1 5 2 8 12 13 14 15	% URBAN Pop 0.99 0.9886 0.9888 requency in Freq. 5 4 4 2 2 1 1 1 1 1 1 1 1 1 1 1	0.8743 Area 0.99 0.9886 0.9888	0.8937 0.8743 Compare 0.99 0.9886 0.9888 Diff 38 38 38 38	0.8178 0.767 Clusters 0.8298 0.8316 0.8573 Sprd 13 13 13 13 13	0.5322 Perimeter 0.9925 0.9872 0.9889 Brd 13 13 13 13 13	0.9821 Clst Size 0.997 0.9975 0.9966 SIRs 38 13 388 13 388 13	0.8691 Lat 0.9895 0.9861 0.9887 RdGr 63 88 88 63	0.8873 <u>Lon</u> 0.9929 0.9917 0.9923	0.2691 Slope 0.005 0.0001 0.0027 Solution Diff 13 7 19 12 2	0.8884 0.856 <u>%Urban</u> 0.9886 0.9886 0.9844 <u>Sprd</u> 13 7 19	173283750 172918125 IntSect 85691250 85151250 82158750 Brd 13 7 19 12 2	928946250 <u>Union</u> 423078750 421115625 416160000 <u>SIRs</u> 38 32 44 12	0.1943 0.1861 LeeSalee 0.2025 0.2022 0.1974 RdGr 63 57 69	13 38 38 38 13 38 Diff Sprd 38 13 38 13 38 13 Start End Step	38 38 63 38 13 63 38 63 38 63 38 63 13 13 63 13 13 63 13 13 63
Run FI Run FI Run 10 18 26 1 1 5 2 8 12 13 14 15 25	% URBAN Pop 0.99 0.9886 0.9888 requency in Freq. 5 4 2 2 1 1 1 1 1 1 1	0.8743 Area 0.99 0.9886 0.9888	0.8937 0.8743 Compare 0.99 0.9886 0.9888 Diff 38 38 38 38	0.8178 0.767 Clusters 0.8298 0.8316 0.8573 Sprd 13 13 13 13 13	0.5322 Perimeter 0.9925 0.9872 0.9889 Brd 13 13 13 13 13	0.9821 Clst Size 0.997 0.9975 0.9966 SIRs 38 13 388 13 388 13	0.8691 Lat 0.9895 0.9861 0.9887 RdGr 63 88 88 63	0.8873 <u>Lon</u> 0.9929 0.9917 0.9923	0.2691 Slope 0.005 0.0001 0.0027 Solution Diff 13 7 19 12 2	0.8884 0.856 <u>%Urban</u> 0.9886 0.9886 0.9844 <u>Sprd</u> 13 7 19 12 2	173283750 172918125 IntSect 85691250 85151250 82158750 Brd 13 7 19 12 2	928946250 <u>Union</u> 423078750 421115625 416160000 <u>SIRs</u> 38 32 44 12	0.1943 0.1861 LeeSalee 0.2025 0.2022 0.1974 RdGr 63 57 69	13 38 38 38 13 38 Diff Sprd 38 13 38 13 38 13 Start End Step	38 38 63 38 13 63 38 63 38 63 38 63 13 13 63 13 13 63 13 13 63
Run Fi Run Fi Run Fi Run 10 18 26 1 1 5 5 2 8 12 13 14 15 25 27	% URBAN Pop 0.99 0.9886 0.9888 requency in Freq. 5 4 4 2 2 1 1 1 1 1 1 1 1	0.8743 Area 0.99 0.9886 0.9888	0.8937 0.8743 Compare 0.99 0.9886 0.9888 Diff 38 38 38 38	0.8178 0.767 Clusters 0.8298 0.8316 0.8573 Sprd 13 13 13 13 13	0.5322 Perimeter 0.9925 0.9872 0.9889 Brd 13 13 13 13 13	0.9821 Clst Size 0.997 0.9975 0.9966 SIRs 38 13 388 13 388 13	0.8691 Lat 0.9895 0.9861 0.9887 RdGr 63 88 88 63	0.8873 <u>Lon</u> 0.9929 0.9917 0.9923	0.2691 Slope 0.005 0.0001 0.0027 Solution Diff 13 7 19 12 2	0.8884 0.856 <u>%Urban</u> 0.9886 0.9886 0.9844 <u>Sprd</u> 13 7 19 12 2	173283750 172918125 IntSect 85691250 85151250 82158750 Brd 13 7 19 12 2	928946250 <u>Union</u> 423078750 421115625 416160000 <u>SIRs</u> 38 32 44 12	0.1943 0.1861 LeeSalee 0.2025 0.2022 0.1974 RdGr 63 57 69	13 38 38 38 13 38 Diff Sprd 38 13 38 13 38 13 Start End Step	38 38 63 38 13 63 38 63 38 63 38 63 13 13 63 13 13 63 13 13 63
Run Fi Run Fi Run 10 10 10 10 10 10 10 10 10 10 10 10 10	% URBAN Pop 0.99 0.9886 0.9888 requency in Freq. 5 4 4 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.8743 Area 0.99 0.9886 0.9888	0.8937 0.8743 Compare 0.99 0.9886 0.9888 Diff 38 38 38 38	0.8178 0.767 Clusters 0.8298 0.8316 0.8573 Sprd 13 13 13 13 13	0.5322 Perimeter 0.9925 0.9872 0.9889 Brd 13 13 13 13 13	0.9821 Clst Size 0.997 0.9975 0.9966 SIRs 38 13 388 13 388 13	0.8691 Lat 0.9895 0.9861 0.9887 RdGr 63 88 88 63	0.8873 <u>Lon</u> 0.9929 0.9917 0.9923	0.2691 Slope 0.005 0.0001 0.0027 Solution Diff 13 7 19 12 2	0.8884 0.856 <u>%Urban</u> 0.9886 0.9886 0.9844 <u>Sprd</u> 13 7 19 12 2	173283750 172918125 IntSect 85691250 85151250 82158750 Brd 13 7 19 12 2	928946250 <u>Union</u> 423078750 421115625 416160000 <u>SIRs</u> 38 32 44 12	0.1943 0.1861 LeeSalee 0.2025 0.2022 0.1974 RdGr 63 57 69	13 38 38 38 13 38 Diff Sprd 38 13 38 13 38 13 Start End Step	38 38 63 38 13 63 38 63 38 63 38 63 13 13 63 13 13 63 13 13 63
Run Fi Run Fi Run Fi Run 10 18 26 1 1 5 5 2 8 12 13 14 15 25 27	% URBAN Pop 0.99 0.9886 0.9888 requency in Freq. 5 4 4 2 2 1 1 1 1 1 1 1 1	0.8743 Area 0.99 0.9886 0.9888	0.8937 0.8743 Compare 0.99 0.9886 0.9888 Diff 38 38 38 38	0.8178 0.767 Clusters 0.8298 0.8316 0.8573 Sprd 13 13 13 13 13	0.5322 Perimeter 0.9925 0.9872 0.9889 Brd 13 13 13 13 13	0.9821 Clst Size 0.997 0.9975 0.9966 SIRs 38 13 388 13 388 13	0.8691 Lat 0.9895 0.9861 0.9887 RdGr 63 88 88 63	0.8873 <u>Lon</u> 0.9929 0.9917 0.9923	0.2691 Slope 0.005 0.0001 0.0027 Solution Diff 13 7 19 12 2	0.8884 0.856 <u>%Urban</u> 0.9886 0.9886 0.9844 <u>Sprd</u> 13 7 19 12 2	173283750 172918125 IntSect 85691250 85151250 82158750 Brd 13 7 19 12 2	928946250 <u>Union</u> 423078750 421115625 416160000 <u>SIRs</u> 38 32 44 12	0.1943 0.1861 LeeSalee 0.2025 0.2022 0.1974 RdGr 63 57 69	13 38 38 38 13 38 Diff Sprd 38 13 38 13 38 13 Start End Step	38 38 63 38 13 63 38 63 38 63 38 63 13 13 63 13 13 63 13 13 63

Run 31 15 5	0.9822 0.9841 0.9775		Compare 0.9822 0.9841 0.9775	0.6029	0.9838 0.9841 0.9854	0.9935 0.9972	0.9783 0.9837	Lon 0.9852 0.9899 0.9827	Slope 0.0029 0.0085 0.0005	0.984 0.982	IntSect 109332000 108445500 90598500	518539500 516118500	<u>LeeSalee</u> 0.2108 0.2101 0.2097	7 19	Brd SIRs 19 44 19 44 7 32 19 44	69 57
	AREA Pop 0.9896 0.9889 0.9883	Area 0.9896 0.9889 0.9883	Compare 0.9896 0.9889 0.9883	0.9102	Perimeter 0.9908 0.9914 0.9896	0.9937 0.9934	0.9916 0.9867	Lon 0.9941 0.992 0.9896	Slope 0.0215 0.0191 0.0062	0.9942 0.9942	IntSect 51309000 49626000 48874500	303255000 302634000	0.1692 0.164 0.161	19 7	Brd SIRs 19 32 19 44 19 44 19 44	69 57 69
	O.9833 0.9869 0.9875	Area 0.9833 0.9869 0.9875	Compare 0.9833 0.9869 0.9875	0.9767 0.9612	Perimeter 0.9922 0.9817 0.9825	0.99 0.996	0.9793 0.9854	Lon 0.9854 0.9927 0.9846	Slope 0.0001 0.0735 0.0092	%Urban 0.976 0.9955 0.9847	94558500 40806000	<u>Union</u> 453757500 261067500 269950500	0.2084 0.1563 0.1578	7 7	Brd SIRs 7 44 7 44 7 32 7 44	57 69 2 57
Run 14 22 13	0.9833 0.9834 0.9794	0.9833 0.9834 0.9794		Clusters 0.9767 0.8747 0.8769	Perimeter 0.9922 0.992 0.9919	0.99	0.9793 0.9805		Slope 0.0001 0.0011 0.0006	0.976 0.976	94135500	<u>Union</u> 453757500 455796000 427018500	0.2084 0.2065 0.208	19 19	Brd SIRs 7 44 7 32 7 44 7 44	57 2 69
	CLUSTER : Pop 0.9868 0.9872 0.9841		0.9868 0.9872 0.9841	0.8416 0.8324	Perimeter 0.9749 0.9794 0.9841	0.998 0.9974	0.9883 0.9922	Lon 0.9897 0.9936 0.9899	Slope 0.0049 0.0353 0.0085	0.9913	IntSect 47313000 46435500 108445500	287401500	0.1661 0.1616 0.2101	7 7	Brd SIRs 19 44 19 32 19 44 19 44	69 57 57
TOP 3	HORIZONT	AL ALIGNN	IENT													<u>.</u>
					Perimeter 0.9794		<u>Lat</u>	Lon 0.9936	Slope 0.0353	%Urban 0.9913		<u>Union</u> 287401500	LeeSalee 0.1616		Brd SIRs 19 32	
20 9	0.9896 0.9869	0.9896 0.9869	0.9896 0.9869	0.9102 0.2357	0.9908 0.9681	0.9937	0.9916	0.9941 0.9936	0.0353 0.0215 0.0379	0.9942	51309000	303255000 261328500	0.1692 0.1556	19 7	19 32 7 44 19 32	69
TOP 3	VERTICAL	ALIGNMEN	т											, ,	19 32	31
Run	Pop	Area	Compare		Perimeter			Lon		%Urban				Diff Sprd		
20 3 9	0.9896 0.9872 0.9869	0.9896 0.9872 0.9869	0.9896 0.9872 0.9869	0.9102 0.8324 0.2357	0.9908 0.9794 0.9681		0.9922	0.9941 0.9936 0.9936	0.0215 0.0353 0.0379		46435500	303255000 287401500 261328500	0.1692 0.1616 0.1556	7 7 7 7	19 32 19 32 7 44	57 57
TOP 3	SLOPE													7 7	19 32	57
Run	Pop	Area			Perimeter			Lon			IntSect	Union		Diff Sprd		
25	0.9869	0.9869	0.9869		0.9817			0.9927	0.0735		40806000		0.1563		7 44	
9	0.9869 0.9872	0.9869 0.9872	0.9869 0.9872		0.9681 0.9794			0.9936 0.9936	0.0379 0.0353		40657500 46435500		0.1556 0.1616		7 44 19 32	
Ü	% URBAN	0.5072	0.0012	0.0024	0.5754	0.0014	0.0022	0.0000	0.0000	0.5510	4040000	201401000		7 7	7 44	
		Area	Compare	Clusters	Perimeter	Clst Size	Lat	Lon	Slope	%Urban	IntSect	Union	LeeSalee	Diff Sprd	Brd SIRs	RdGr
25	0.9869	0.9869	0.9869		0.9817			0.9927	0.0735			261067500	0.1563		7 44	
9 17	0.9869 0.9862	0.9869 0.9862	0.9869 0.9862		0.9681 0.9737			0.9936 0.9892	0.0379 0.0347		40657500 40189500		0.1556 0.1547		7 44 7 32	
17	0.9002	0.3002	0.9002	0.0515	0.9131	0.9901	0.3010	0.3032	0.0547	0.9955	40103300	233010300		7 7	7 44	
Dun E	requency in	ton 2							Solution							
<u>Run</u> 3	Freq.	top 3	Diff 7	<u>Sprd</u> 7	<u>Brd</u> 19	SIRs 32	<u>RdGr</u> 57		Diff 7	Sprd 19	<u>Brd</u> 19	SIRs 44	<u>RdGr</u> 57			
9 20	4 3		7 19	7 7	7 19	44 32	57 69		3	15	15	38	51	Start		
25	3		7	7	7	44	69		3	15	13	30	31	Otan		
14 15	2		19 7	19 19	7 19	44 44	57 57		9	21	21	50	63	End		
2	1		,	19	19	***	57		6	6	6	6	6	Step		
12 13	1								2	2	2	3	3	72	Runs	
17	1								Searching	LeeSalee	solution					
22 27 28	1 1 1															
31	1															

	Jiati														
TOP 3	LEESALEE														
		-	C	Clusters	Davimatas	Clat Cina	1 -4	1	Clana	0/11-6	IntCoot	Union	LasCalas	Diff C==4 B	-4 CID* D4C*
	Pop	Area			Perimeter 0.9816	CIST SIZE			Slope	%Urban	IntSect	Union			rd SIRs RdGr
63	0.9774	0.9774	0.9774	0.909				0.9817	0.0041		114309000		0.2165		21 44 63
39	0.9796	0.9796	0.9796					0.9837	0.0206		114223500		0.2157		21 44 57
71	0.9761	0.9761	0.9761	0.4015	0.9812	0.9935	0.9718	0.981	0.0159	0.9729	112243500	523885500	0.2143		21 50 63
														3 21 2	21 44 63
TOP 3	AREA													="	
Run	Pop	Area	Compare	Clusters	Perimeter	Clst Size	Lat	Lon	Slope	%Urban	IntSect	Union	LeeSalee	Diff Sprd B	rd SIRs RdGr
36	0.9874	0.9874	0.9874	0.7766	0.9877	0.9938	0.9864	0.9916	0.0078	0.9875	93663000	459931500	0.2036	9 15	21 44 57
44	0.9871	0.9871	0.9871	0.712	0.983	0.9943	0.9834	0.9894	0.0009	0.9836	94221000	453397500	0.2078	9 15	21 50 57
2	0.9868	0.9868	0.9868			0.9958		0.9896	0.0011	0.9766		424566000	0.2052		15 38 51
															21 ? 57
TOP 3	CLUSTER													3 13	
Run		Area	Compare	Clusters	Perimeter	Clst Size	Lat	Lon	Slope	%Urban	IntSect	Union	LeeSalee	Diff Sprd B	rd SIRs RdGr
3	0.9804	0.9804	0.9804				0.9781	0.985	0.0026		87048000	415669500	0.2094		21 38 51
10	0.9841	0.9841	0.9841				0.9816	0.988	0.0020			426055500	0.2045		15 44 51
42	0.9849	0.9849	0.9849				0.981	0.9877	0.0012	0.9623		418945500	0.2043		15 50 57
42	0.9049	0.9049	0.9049	0.9546	0.9000	0.9929	0.901	0.9077	0.0004	0.911	00001300	410940000	0.2074		15 7 51
TOD 2	CLUSTER	PERIMETER												9 15 1	וס י סו
Run		Area			Perimeter			Lon		%Urban		Union			rd SIRs RdGr
13	0.977	0.977	0.977				0.9754	0.9834	0.002		105039000		0.2109		15 44 51
21	0.9783	0.9783	0.9783				0.9771	0.9839	0.0057		105502500		0.2117		15 50 51
26	0.9866	0.9866	0.9866	0.9518	0.9891	0.9934	0.9845	0.9895	0.0006	0.9809	86724000	426114000	0.2035		15 38 57
														3 21 1	5 ? 51
	CLUSTER														
Run		Area	Compare	Clusters	Perimeter	Clst Size	Lat	Lon	Slope	%Urban		Union	<u>LeeSalee</u>	Diff Sprd B	rd SIRs RdGr
58	0.9853	0.9853	0.9853			0.9972	0.9807	0.9866	0.0084	0.9766		423117000	0.2067		15 44 63
50	0.9842	0.9842	0.9842					0.9865	0.0007	0.977		421614000	0.2049		15 38 63
16	0.9809	0.9809	0.9809					0.9849	0.0222		121113000		0.2087		21 44 51
	0.0000	0.0000	0.0000	0.0010	0.0011	0.0007	0.0111	0.0010	0.0222	0.01	.2	000.0000	0.2007		5 44 63
TOP 3	HORIZONT	AL ALIGNN	IFNT												
Run		Area		Clusters	Perimeter	Clst_Size	Lat	Lon	Slope	%Urban	IntSect	Union	LeeSalee	Diff Sprd B	rd SIRs RdGr
36	0.9874	0.9874	0.9874		0.9877		0.9864	0.9916	0.0078			459931500	0.2036		21 44 57
12	0.9862	0.9874	0.9874					0.9916	0.0078	0.9836		454207500	0.2036		
			0.0002												
68	0.9866	0.9866	0.9866	0.7729	0.9838	0.9945	0.985	0.9899	0.0004	0.9832	94036500	458118000	0.2053		21 50 63
														9 15 2	21 44 ?
		ALIGNMEN													
Run	Pop		Compare	Clusters	Perimeter		Lat	Lon	Slope	%Urban	IntSect	Union	<u>LeeSalee</u>	Diff Sprd B	
36	0.9874	0.9874	0.9874				0.9864	0.9916	0.0078	0.9875		459931500	0.2036	0 .0	21 44 57
12	0.9862	0.9862	0.9862	0.762	0.9871	0.9943	0.9852	0.9912	0.0059	0.9836	92902500	454207500	0.2045	9 15	21 44 51
68	0.9866	0.9866	0.9866	0.7729	0.9838	0.9945	0.985	0.9899	0.0004	0.9832	94036500	458118000	0.2053	9 15	21 50 63
															21 44 ?
TOP 3	SLOPE														
						01-4 01	Lat	Lon	Slope	%Urban	IntSect	Union			
	Pop	Area	Compare	Clusters	Perimeter								LeeSalee	Diff Sprd B	rd SIRs RdGr
Run	Pop 0 9774	Area 0 9774			Perimeter 0.9862				0.0244		107905500			Diff Sprd B	
<u>Run</u> 61	0.9774	0.9774	0.9774	0.8924	0.9862	0.9938	0.9721	0.9798	0.0244	0.9708		504643500	0.2138	3 21	15 44 63
Run 61 47	0.9774 0.9766	0.9774 0.9766	0.9774 0.9766	0.8924 0.8055	0.9862 0.9806	0.9938 0.9942	0.9721 0.9729	0.9798 0.9816	0.0235	0.9708 0.9723	112635000	504643500 528426000	0.2138 0.2132	3 21 3 21	15 44 63 21 50 57
<u>Run</u> 61	0.9774	0.9774	0.9774	0.8924 0.8055	0.9862 0.9806	0.9938 0.9942	0.9721 0.9729	0.9798		0.9708 0.9723		504643500 528426000	0.2138	3 21 3 21 9 21	15 44 63 21 50 57 21 44 51
Run 61 47 16	0.9774 0.9766 0.9809	0.9774 0.9766	0.9774 0.9766	0.8924 0.8055	0.9862 0.9806	0.9938 0.9942	0.9721 0.9729	0.9798 0.9816	0.0235	0.9708 0.9723	112635000	504643500 528426000	0.2138 0.2132	3 21 3 21 9 21	15 44 63 21 50 57
Run 61 47 16 TOP 3	0.9774 0.9766 0.9809 % URBAN	0.9774 0.9766 0.9809	0.9774 0.9766 0.9809	0.8924 0.8055 0.3879	0.9862 0.9806 0.9674	0.9938 0.9942 0.9967	0.9721 0.9729 0.9771	0.9798 0.9816 0.9849	0.0235 0.0222	0.9708 0.9723 0.974	112635000 121113000	504643500 528426000 580450500	0.2138 0.2132 0.2087	3 21 3 21 9 21 3 21 2	15 44 63 21 50 57 21 44 51 21 44 ?
8un 61 47 16 TOP 3 Run	0.9774 0.9766 0.9809 % URBAN Pop	0.9774 0.9766 0.9809	0.9774 0.9766 0.9809 Compare	0.8924 0.8055 0.3879	0.9862 0.9806 0.9674 Perimeter	0.9938 0.9942 0.9967 Clst Size	0.9721 0.9729 0.9771	0.9798 0.9816 0.9849	0.0235 0.0222 Slope	0.9708 0.9723 0.974 %Urban	112635000 121113000 IntSect	504643500 528426000 580450500 Union	0.2138 0.2132 0.2087	3 21 3 21 9 21 3 21 2	15 44 63 21 50 57 21 44 51 21 44 ? rd SIRs RdGr
Run 61 47 16 TOP 3 Run 36	0.9774 0.9766 0.9809 % URBAN Pop 0.9874	0.9774 0.9766 0.9809 <u>Area</u> 0.9874	0.9774 0.9766 0.9809 <u>Compare</u> 0.9874	0.8924 0.8055 0.3879 <u>Clusters</u> 0.7766	0.9862 0.9806 0.9674 Perimeter 0.9877	0.9938 0.9942 0.9967 <u>Clst Size</u> 0.9938	0.9721 0.9729 0.9771 <u>Lat</u> 0.9864	0.9798 0.9816 0.9849 Lon 0.9916	0.0235 0.0222 Slope 0.0078	0.9708 0.9723 0.974 %Urban 0.9875	112635000 121113000 IntSect 93663000	504643500 528426000 580450500 <u>Union</u> 459931500	0.2138 0.2132 0.2087 LeeSalee 0.2036	3 21 3 21 9 21 3 21 2 Diff Sprd B 9 15	15 44 63 21 50 57 21 44 51 21 44 ? rd SIRs RdGr 21 44 57
Run 61 47 16 TOP 3 Run 36 19	0.9774 0.9766 0.9809 % URBAN Pop 0.9874 0.9803	0.9774 0.9766 0.9809 <u>Area</u> 0.9874 0.9803	0.9774 0.9766 0.9809 <u>Compare</u> 0.9874 0.9803	0.8924 0.8055 0.3879 <u>Clusters</u> 0.7766 0.9269	0.9862 0.9806 0.9674 Perimeter 0.9877 0.9836	0.9938 0.9942 0.9967 <u>Clst Size</u> 0.9938 0.9923	0.9721 0.9729 0.9771 <u>Lat</u> 0.9864 0.98	0.9798 0.9816 0.9849 Lon 0.9916 0.9867	0.0235 0.0222 Slope 0.0078 0.0031	0.9708 0.9723 0.974 %Urban 0.9875 0.9853	112635000 121113000 IntSect 93663000 87772500	504643500 528426000 580450500 Union 459931500 414810000	0.2138 0.2132 0.2087 LeeSalee 0.2036 0.2116	3 21 3 21 9 21 3 21 2 Diff Sprd B 9 15 3 15	15 44 63 21 50 57 21 44 51 21 44 ? rd SIRs RdGr 21 44 57 21 50 51
Run 61 47 16 TOP 3 Run 36	0.9774 0.9766 0.9809 % URBAN Pop 0.9874	0.9774 0.9766 0.9809 <u>Area</u> 0.9874	0.9774 0.9766 0.9809 <u>Compare</u> 0.9874	0.8924 0.8055 0.3879 <u>Clusters</u> 0.7766 0.9269	0.9862 0.9806 0.9674 Perimeter 0.9877 0.9836	0.9938 0.9942 0.9967 <u>Clst Size</u> 0.9938 0.9923	0.9721 0.9729 0.9771 <u>Lat</u> 0.9864	0.9798 0.9816 0.9849 Lon 0.9916	0.0235 0.0222 Slope 0.0078	0.9708 0.9723 0.974 %Urban 0.9875 0.9853	112635000 121113000 IntSect 93663000 87772500	504643500 528426000 580450500 <u>Union</u> 459931500	0.2138 0.2132 0.2087 LeeSalee 0.2036	3 21 3 21 9 21 3 21 2 Diff Sprd B 9 15 3 15 3 15	15 44 63 21 50 57 21 44 51 21 44 ? rd SIRs RdGr 21 44 57 21 50 51 21 38 51
Run 61 47 16 TOP 3 Run 36 19	0.9774 0.9766 0.9809 % URBAN Pop 0.9874 0.9803	0.9774 0.9766 0.9809 <u>Area</u> 0.9874 0.9803	0.9774 0.9766 0.9809 <u>Compare</u> 0.9874 0.9803	0.8924 0.8055 0.3879 <u>Clusters</u> 0.7766 0.9269	0.9862 0.9806 0.9674 Perimeter 0.9877 0.9836	0.9938 0.9942 0.9967 <u>Clst Size</u> 0.9938 0.9923	0.9721 0.9729 0.9771 <u>Lat</u> 0.9864 0.98	0.9798 0.9816 0.9849 Lon 0.9916 0.9867	0.0235 0.0222 Slope 0.0078 0.0031	0.9708 0.9723 0.974 %Urban 0.9875 0.9853	112635000 121113000 IntSect 93663000 87772500	504643500 528426000 580450500 Union 459931500 414810000	0.2138 0.2132 0.2087 LeeSalee 0.2036 0.2116	3 21 3 21 9 21 3 21 2 Diff Sprd B 9 15 3 15 3 15	15 44 63 21 50 57 21 44 51 21 44 ? rd SIRs RdGr 21 44 57 21 50 51
Run 61 47 16 TOP 3 Run 36 19 3	0.9774 0.9766 0.9809 % URBAN Pop 0.9874 0.9803 0.9804	0.9774 0.9766 0.9809 <u>Area</u> 0.9874 0.9803 0.9804	0.9774 0.9766 0.9809 <u>Compare</u> 0.9874 0.9803	0.8924 0.8055 0.3879 <u>Clusters</u> 0.7766 0.9269	0.9862 0.9806 0.9674 Perimeter 0.9877 0.9836	0.9938 0.9942 0.9967 <u>Clst Size</u> 0.9938 0.9923	0.9721 0.9729 0.9771 <u>Lat</u> 0.9864 0.98	0.9798 0.9816 0.9849 Lon 0.9916 0.9867	0.0235 0.0222 Slope 0.0078 0.0031 0.0026	0.9708 0.9723 0.974 <u>*Wurban</u> 0.9875 0.9853 0.9853	112635000 121113000 IntSect 93663000 87772500	504643500 528426000 580450500 Union 459931500 414810000	0.2138 0.2132 0.2087 LeeSalee 0.2036 0.2116	3 21 3 21 9 21 3 21 2 Diff Sprd B 9 15 3 15 3 15	15 44 63 21 50 57 21 44 51 21 44 ? rd SIRs RdGr 21 44 57 21 50 51 21 38 51
Run 61 47 16 TOP 3 Run 36 19 3	0.9774 0.9766 0.9809 % URBAN Pop 0.9874 0.9803	0.9774 0.9766 0.9809 <u>Area</u> 0.9874 0.9803 0.9804	0.9774 0.9766 0.9809 <u>Compare</u> 0.9874 0.9803 0.9804	0.8924 0.8055 0.3879 Clusters 0.7766 0.9269 0.9718	0.9862 0.9806 0.9674 Perimeter 0.9877 0.9836	0.9938 0.9942 0.9967 <u>Clst Size</u> 0.9938 0.9923 0.9906	0.9721 0.9729 0.9771 <u>Lat</u> 0.9864 0.98 0.9781	0.9798 0.9816 0.9849 Lon 0.9916 0.9867	0.0235 0.0222 <u>Slope</u> 0.0078 0.0031 0.0026	0.9708 0.9723 0.974 <u>*Wurban</u> 0.9875 0.9853 0.9853	112635000 121113000 IntSect 93663000 87772500	504643500 528426000 580450500 <u>Union</u> 459931500 414810000 415669500	0.2138 0.2132 0.2087 LeeSalee 0.2036 0.2116 0.2094	3 21 3 21 9 21 3 21 2 Diff Sprd B 9 15 3 15 3 15	15 44 63 21 50 57 21 44 51 21 44 ? rd SIRs RdGr 21 44 57 21 50 51 21 38 51
Run 61 47 16 TOP 3 Run 36 19 3	0.9774 0.9766 0.9809 % URBAN Pop 0.9874 0.9803 0.9804	0.9774 0.9766 0.9809 <u>Area</u> 0.9874 0.9803 0.9804	0.9774 0.9766 0.9809 <u>Compare</u> 0.9874 0.9803	0.8924 0.8055 0.3879 <u>Clusters</u> 0.7766 0.9269	0.9862 0.9806 0.9674 Perimeter 0.9877 0.9836	0.9938 0.9942 0.9967 <u>Clst Size</u> 0.9938 0.9923	0.9721 0.9729 0.9771 <u>Lat</u> 0.9864 0.98	0.9798 0.9816 0.9849 Lon 0.9916 0.9867	0.0235 0.0222 Slope 0.0078 0.0031 0.0026	0.9708 0.9723 0.974 <u>*Wurban</u> 0.9875 0.9853 0.9853	112635000 121113000 IntSect 93663000 87772500	504643500 528426000 580450500 Union 459931500 414810000	0.2138 0.2132 0.2087 LeeSalee 0.2036 0.2116	3 21 3 21 9 21 3 21 2 Diff Sprd B 9 15 3 15 3 15	15 44 63 21 50 57 21 44 51 21 44 ? rd SIRs RdGr 21 44 57 21 50 51 21 38 51
Run 61 47 16 TOP 3 Run 36 19 3	0.9774 0.9766 0.9809 % URBAN Pop 0.9874 0.9803 0.9804	0.9774 0.9766 0.9809 <u>Area</u> 0.9874 0.9803 0.9804	0.9774 0.9766 0.9809 <u>Compare</u> 0.9874 0.9803 0.9804	0.8924 0.8055 0.3879 Clusters 0.7766 0.9269 0.9718	0.9862 0.9806 0.9674 Perimeter 0.9877 0.9836 0.978	0.9938 0.9942 0.9967 <u>Clst Size</u> 0.9938 0.9923 0.9906	0.9721 0.9729 0.9771 <u>Lat</u> 0.9864 0.98 0.9781	0.9798 0.9816 0.9849 Lon 0.9916 0.9867	0.0235 0.0222 <u>Slope</u> 0.0078 0.0031 0.0026	0.9708 0.9723 0.974 <u>*Wurban</u> 0.9875 0.9853 0.9853	112635000 121113000 121113000 IntSect 93663000 87772500 87048000	504643500 528426000 580450500 <u>Union</u> 459931500 414810000 415669500	0.2138 0.2132 0.2087 LeeSalee 0.2036 0.2116 0.2094	3 21 3 21 9 21 3 21 2 Diff Sprd B 9 15 3 15 3 15	15 44 63 21 50 57 21 44 51 21 44 ? rd SIRs RdGr 21 44 57 21 50 51 21 38 51
Run 61 47 16 TOP 3 Run 36 19 3	0.9774 0.9766 0.9809 % URBAN Pop 0.9874 0.9803 0.9804 requency ir Freq.	0.9774 0.9766 0.9809 <u>Area</u> 0.9874 0.9803 0.9804	0.9774 0.9766 0.9809 <u>Compare</u> 0.9874 0.9803 0.9804	0.8924 0.8055 0.3879 Clusters 0.7766 0.9269 0.9718	0.9862 0.9806 0.9674 Perimeter 0.9877 0.9836 0.978	0.9938 0.9942 0.9967 <u>Cist Size</u> 0.9938 0.9923 0.9906	0.9721 0.9729 0.9771 <u>Lat</u> 0.9864 0.98 0.9781	0.9798 0.9816 0.9849 Lon 0.9916 0.9867	0.0235 0.0222 <u>Slope</u> 0.0078 0.0031 0.0026 <u>Solution</u> <u>Diff</u>	0.9708 0.9723 0.974 <u>%Urban</u> 0.9875 0.9853 0.9853	112635000 121113000 IntSect 93663000 87772500 87048000	504643500 528426000 580450500 <u>Union</u> 459931500 414810000 415669500	0.2138 0.2132 0.2087 LeeSalee 0.2036 0.2116 0.2094	3 21 3 21 9 21 3 21 2 Diff Sprd B 9 15 3 15 3 15	15 44 63 21 50 57 21 44 51 21 44 ? rd SIRs RdGr 21 44 57 21 50 51 21 38 51
Run 61 47 16 TOP 3 Run 36 19 3 Run FRun 36 19 36	0.9774 0.9766 0.9809 % URBAN Pop 0.9874 0.9803 0.9804 requency ir Freq. 4	0.9774 0.9766 0.9809 <u>Area</u> 0.9874 0.9803 0.9804	0.9774 0.9766 0.9809 <u>Compare</u> 0.9874 0.9803 0.9804 <u>Diff</u> 9	0.8924 0.8055 0.3879 Clusters 0.7766 0.9269 0.9718 Sprd 15 15	0.9862 0.9806 0.9674 Perimeter 0.9877 0.9836 0.978	0.9938 0.9942 0.9967 CIst Size 0.9938 0.9923 0.9906	0.9721 0.9729 0.9771 <u>Lat</u> 0.9864 0.98 0.9781 <u>RdGr</u> 57	0.9798 0.9816 0.9849 Lon 0.9916 0.9867	0.0235 0.0222 <u>Slope</u> 0.0078 0.0031 0.0026 <u>Solution</u> <u>Diff</u> 9 3	0.9708 0.9723 0.974 <u>%Urban</u> 0.9875 0.9853 0.9853 <u>Sprd</u> 15 21	112635000 121113000 IntSect 93663000 87772500 87048000 Brd 21	504643500 528426000 580450500 <u>Union</u> 459931500 414810000 415669500 <u>SIRs</u> 44	0.2138 0.2132 0.2087 LeeSalee 0.2036 0.2116 0.2094 RdGr 51	3 21 3 21 9 21 3 21 2 Diff Sprd B 9 15 3 15 3 15	15 44 63 21 50 57 21 44 51 21 44 ? rd SIRs RdGr 21 44 57 21 50 51 21 38 51
Run 61 47 16 TOP 3 Run 36 19 3 Run FRun 36 3 36 3 12	0.9774 0.9766 0.9809 % URBAN <u>Pop</u> 0.9874 0.9803 0.9804 requency ir <u>Freq.</u> 4 2 2	0.9774 0.9766 0.9809 <u>Area</u> 0.9874 0.9803 0.9804	0.9774 0.9766 0.9809 <u>Compare</u> 0.9874 0.9803 0.9804 <u>Diff</u> 9 3	0.8924 0.8055 0.3879 Clusters 0.7766 0.9269 0.9718 Sprd 15 15 15	0,9862 0,9806 0,9674 Perimeter 0,9877 0,9836 0,978 Brd 21 21 21	0.9938 0.9942 0.9967 CIST Size 0.9938 0.9923 0.9906 SIRs 44 38 44	0.9721 0.9729 0.9771 Lat 0.9864 0.98 0.9781 RdGr 57 51 51	0.9798 0.9816 0.9849 Lon 0.9916 0.9867	0.0235 0.0222 Slope 0.0078 0.0031 0.0026 Solution Diff 9	0.9708 0.9723 0.974 <u>%Urban</u> 0.9875 0.9853 0.9853	112635000 121113000 IntSect 93663000 87772500 87048000 Brd 21 21	504643500 528426000 580450500 <u>Union</u> 459931500 414810000 415669500 <u>SIRs</u> 44 44	0.2138 0.2132 0.2087 LeeSalee 0.2036 0.2116 0.2094 RdGr 51 63	3 21 3 21 9 21 3 21 2 Diff Sprd B 9 15 3 15 3 15 3 15	15 44 63 21 50 57 21 44 51 21 44 ? rd SIRs RdGr 21 44 57 21 50 51 21 38 51
Run 61 47 16 TOP 3 Run 36 19 3 8 Run FRun 36 3 12 16	0,9774 0,9766 0,9809 % URBAN Pop 0,9874 0,9803 0,9804 requency ir Freq. 4 2 2 2	0.9774 0.9766 0.9809 <u>Area</u> 0.9874 0.9803 0.9804	0.9774 0.9766 0.9809 <u>Compare</u> 0.9874 0.9803 0.9804 <u>Diff</u> 9 3 9 9	0.8924 0.8055 0.3879 <u>Clusters</u> 0.7766 0.9269 0.9718 <u>Sprd</u> 15 15 15	0.9862 0.9806 0.9674 Perimeter 0.9877 0.9836 0.978 Brd 21 21 21 21	0.9938 0.9942 0.9967 CIst Size 0.9938 0.9923 0.9906 SIRs 44 38 44 44	0.9721 0.9729 0.9771 <u>Lat</u> 0.9864 0.9781 <u>RdGr</u> 57 51 51 51	0.9798 0.9816 0.9849 Lon 0.9916 0.9867	0.0235 0.0222 Slope 0.0078 0.0031 0.0026 Solution Diff 9 3 3 3	0.9708 0.9723 0.974 %Urban 0.9875 0.9853 0.9853 Sprd 15 21 15	112635000 121113000 IntSect 93663000 87772500 87048000 Brd 21 21 20	504643500 528426000 580450500 <u>Union</u> 459931500 414810000 415669500 <u>SIRs</u> 44 44 44	0.2138 0.2132 0.2087 LeeSalee 0.2036 0.2116 0.2094 RdGr 51 63 51	3 21 9 21 3 21 2 Diff Sprd B 9 15 3 15 3 15 3 15 2	15 44 63 21 50 57 21 44 51 21 44 ? rd SIRs RdGr 21 44 57 21 50 51 21 38 51
Run 61 47 16 TOP 3 Run 36 19 3 Run 61 84 16 68	0.9774 0.9766 0.9809 % URBAN Pop 0.9874 0.9803 0.9804 requency ir Freq. 4 2 2 2 2	0.9774 0.9766 0.9809 <u>Area</u> 0.9874 0.9803 0.9804	0.9774 0.9766 0.9809 <u>Compare</u> 0.9874 0.9803 0.9804 <u>Diff</u> 9 3	0.8924 0.8055 0.3879 <u>Clusters</u> 0.7766 0.9269 0.9718 <u>Sprd</u> 15 15 15	0.9862 0.9806 0.9674 Perimeter 0.9877 0.9836 0.978 Brd 21 21 21 21	0.9938 0.9942 0.9967 CIST Size 0.9938 0.9923 0.9906 SIRs 44 38 44	0.9721 0.9729 0.9771 Lat 0.9864 0.98 0.9781 RdGr 57 51 51	0.9798 0.9816 0.9849 Lon 0.9916 0.9867	0.0235 0.0222 <u>Slope</u> 0.0078 0.0031 0.0026 <u>Solution</u> <u>Diff</u> 9 3	0.9708 0.9723 0.974 <u>%Urban</u> 0.9875 0.9853 0.9853 <u>Sprd</u> 15 21	112635000 121113000 IntSect 93663000 87772500 87048000 Brd 21 21	504643500 528426000 580450500 <u>Union</u> 459931500 414810000 415669500 <u>SIRs</u> 44 44	0.2138 0.2132 0.2087 LeeSalee 0.2036 0.2116 0.2094 RdGr 51 63	3 21 3 21 9 21 3 21 2 Diff Sprd B 9 15 3 15 3 15 3 15	15 44 63 21 50 57 21 44 51 21 44 ? rd SIRs RdGr 21 44 57 21 50 51 21 38 51
Run 61 47 16 TOP 3 Run 36 19 3 Run FRun 36 3 12 16 68 2	0,9774 0,9766 0,9809 % URBAN Pop 0,9874 0,9803 0,9804 requency ir Freq. 4 2 2 2 2 1	0.9774 0.9766 0.9809 <u>Area</u> 0.9874 0.9803 0.9804	0.9774 0.9766 0.9809 <u>Compare</u> 0.9874 0.9803 0.9804 <u>Diff</u> 9 3 9 9	0.8924 0.8055 0.3879 <u>Clusters</u> 0.7766 0.9269 0.9718 <u>Sprd</u> 15 15 15	0.9862 0.9806 0.9674 Perimeter 0.9877 0.9836 0.978 Brd 21 21 21 21	0.9938 0.9942 0.9967 CIst Size 0.9938 0.9923 0.9906 SIRs 44 38 44 44	0.9721 0.9729 0.9771 <u>Lat</u> 0.9864 0.9781 <u>RdGr</u> 57 51 51 51	0.9798 0.9816 0.9849 Lon 0.9916 0.9867	0.0235 0.0222 Slope 0.0078 0.0031 0.0026 Solution Diff 9 3 3 3	0.9708 0.9723 0.974 %Urban 0.9875 0.9853 0.9853 Sprd 15 21 15	112635000 121113000 IntSect 93663000 87772500 87048000 Brd 21 20 23	504643500 528426000 580450500 Union 459931500 414810000 415669500 SIRs 44 44 44 47	0.2138 0.2132 0.2087 LeeSalee 0.2036 0.2116 0.2094 RdGr 51 63 51	3 21 3 21 9 21 3 21 2 Diff Sprd B 9 15 3 15 3 15 3 15 2 Start	15 44 63 21 50 57 21 44 51 21 44 ? rd SIRs RdGr 21 44 57 21 50 51 21 38 51
Run F Run 366 19 3 Run 636 19 3 Run 64 19 36 36 36 36 36 36 36 36 36 36 36 36 36	0,9774 0,9766 0,9809 % URBAN Pop 0,9874 0,9803 0,9804 requency ir Freq. 4 2 2 2 2 1 1	0.9774 0.9766 0.9809 <u>Area</u> 0.9874 0.9803 0.9804	0.9774 0.9766 0.9809 <u>Compare</u> 0.9874 0.9803 0.9804 <u>Diff</u> 9 3 9 9	0.8924 0.8055 0.3879 <u>Clusters</u> 0.7766 0.9269 0.9718 <u>Sprd</u> 15 15 15	0.9862 0.9806 0.9674 Perimeter 0.9877 0.9836 0.978 Brd 21 21 21 21	0.9938 0.9942 0.9967 CIst Size 0.9938 0.9923 0.9906 SIRs 44 38 44 44	0.9721 0.9729 0.9771 <u>Lat</u> 0.9864 0.9781 <u>RdGr</u> 57 51 51 51	0.9798 0.9816 0.9849 Lon 0.9916 0.9867	0.0235 0.0222 Slope 0.0078 0.0031 0.0026 Solution Diff 9 3 3 3	0.9708 0.9723 0.974 %Urban 0.9875 0.9853 0.9853 Sprd 15 21 15	112635000 121113000 IntSect 93663000 87772500 87048000 Brd 21 21 20	504643500 528426000 580450500 <u>Union</u> 459931500 414810000 415669500 <u>SIRs</u> 44 44 44	0.2138 0.2132 0.2087 LeeSalee 0.2036 0.2116 0.2094 RdGr 51 63 51	3 21 9 21 3 21 2 Diff Sprd B 9 15 3 15 3 15 3 15 2	15 44 63 21 50 57 21 44 51 21 44 ? rd SIRs RdGr 21 44 57 21 50 51 21 38 51
Run 61 47 16 TOP 3 Run 61 3 3 8 Run FRun 36 3 12 16 68 2 10 13	0.9774 0.9766 0.9809 % URBAN Pop 0.9874 0.9803 0.9804 requency ir Freq. 4 2 2 2 1 1 1	0.9774 0.9766 0.9809 <u>Area</u> 0.9874 0.9803 0.9804	0.9774 0.9766 0.9809 <u>Compare</u> 0.9874 0.9803 0.9804 <u>Diff</u> 9 3 9 9	0.8924 0.8055 0.3879 <u>Clusters</u> 0.7766 0.9269 0.9718 <u>Sprd</u> 15 15 15	0.9862 0.9806 0.9674 Perimeter 0.9877 0.9836 0.978 Brd 21 21 21 21	0.9938 0.9942 0.9967 CIst Size 0.9938 0.9923 0.9906 SIRs 44 38 44 44	0.9721 0.9729 0.9771 <u>Lat</u> 0.9864 0.9781 <u>RdGr</u> 57 51 51 51	0.9798 0.9816 0.9849 Lon 0.9916 0.9867	0.0235 0.0222 Slope 0.0078 0.0031 0.0026 Solution Diff 9 3 3 3 9 6	0.9708 0.9723 0.974 %Urban 0.9875 0.9853 0.9853 Sprd 15 21 15 21 6	112635000 121113000 IntSect 93663000 87772500 87048000 Brd 21 21 20 23 3	504643500 528426000 580450500 Union 459931500 414810000 415669500 SIRs 44 44 47 3	0.2138 0.2132 0.2087 LeeSalee 0.2036 0.2116 0.2094 RdGr 51 63 51 63	3 21 9 21 3 21 2 9 21 3 21 2 Diff Sprd B 9 15 3 15 3 15 2 2 Start End Step	15 44 63 21 50 57 21 44 51 21 44 ? 21 44 7 21 44 57 21 44 57 21 50 51 21 38 51 21 ? 51
Run F Run 366 19 3 Run F Run 68 2 10 13 19	0.9774 0.9766 0.9809 % URBAN Pop 0.9874 0.9803 0.9804 requency ir Freq. 4 2 2 2 2 2 1 1 1 1	0.9774 0.9766 0.9809 <u>Area</u> 0.9874 0.9803 0.9804	0.9774 0.9766 0.9809 <u>Compare</u> 0.9874 0.9803 0.9804 <u>Diff</u> 9 3 9 9	0.8924 0.8055 0.3879 <u>Clusters</u> 0.7766 0.9269 0.9718 <u>Sprd</u> 15 15 15	0.9862 0.9806 0.9674 Perimeter 0.9877 0.9836 0.978 Brd 21 21 21 21	0.9938 0.9942 0.9967 CIst Size 0.9938 0.9923 0.9906 SIRs 44 38 44 44	0.9721 0.9729 0.9771 <u>Lat</u> 0.9864 0.9781 <u>RdGr</u> 57 51 51 51	0.9798 0.9816 0.9849 Lon 0.9916 0.9867	0.0235 0.0222 Slope 0.0078 0.0031 0.0026 Solution Diff 9 3 3 3	0.9708 0.9723 0.974 %Urban 0.9875 0.9853 0.9853 Sprd 15 21 15	112635000 121113000 IntSect 93663000 87772500 87048000 Brd 21 20 23	504643500 528426000 580450500 Union 459931500 414810000 415669500 SIRs 44 44 44 47	0.2138 0.2132 0.2087 LeeSalee 0.2036 0.2116 0.2094 RdGr 51 63 51	3 21 9 21 3 21 2 9 21 3 21 2 Diff Sprd B 9 15 3 15 3 15 2 2 Start End Step	15 44 63 21 50 57 21 44 51 21 44 ? rd SIRs RdGr 21 44 57 21 50 51 21 38 51
Run F 10P 3 Run F 100 3 8 19 3 8 12 16 6 10 13 19 21	0.9774 0.9766 0.9809 % URBAN Pop 0.9803 0.9804 requency in Freq. 4 2 2 2 2 2 1 1 1 1	0.9774 0.9766 0.9809 <u>Area</u> 0.9874 0.9803 0.9804	0.9774 0.9766 0.9809 <u>Compare</u> 0.9874 0.9803 0.9804 <u>Diff</u> 9 3 9 9	0.8924 0.8055 0.3879 <u>Clusters</u> 0.7766 0.9269 0.9718 <u>Sprd</u> 15 15 15	0.9862 0.9806 0.9674 Perimeter 0.9877 0.9836 0.978 Brd 21 21 21 21	0.9938 0.9942 0.9967 CIst Size 0.9938 0.9923 0.9906 SIRs 44 38 44 44	0.9721 0.9729 0.9771 <u>Lat</u> 0.9864 0.9781 <u>RdGr</u> 57 51 51 51	0.9798 0.9816 0.9849 Lon 0.9916 0.9867	0.0235 0.0222 Slope 0.0078 0.0031 0.0026 Solution Diff 9 3 3 9 6 2	0.9708 0.9723 0.974 %Urban 0.9875 0.9853 Sprd 15 21 15 21 6 2	112635000 121113000 IntSect 93663000 87772500 87048000 Brd 21 21 20 23 3 2	504643500 528426000 580450500 Union 459931500 414810000 415669500 SIRs 44 44 47 3 2	0.2138 0.2132 0.2087 LeeSalee 0.2036 0.2116 0.2094 RdGr 51 63 51 63 63	3 21 9 21 3 21 2 9 21 3 21 2 Diff Sprd B 9 15 3 15 3 15 2 2 Start End Step	15 44 63 21 50 57 21 44 51 21 44 ? 21 44 7 21 44 57 21 44 57 21 50 51 21 38 51 21 ? 51
Run F Run 36 3 112 16 68 2 10 13 19 21 126	0.9774 0.9766 0.9809 % URBAN Pop 0.9874 0.9803 0.9804 requency ir Freq. 4 2 2 2 1 1 1 1 1 1	0.9774 0.9766 0.9809 <u>Area</u> 0.9874 0.9803 0.9804	0.9774 0.9766 0.9809 <u>Compare</u> 0.9874 0.9803 0.9804 <u>Diff</u> 9 3 9 9	0.8924 0.8055 0.3879 <u>Clusters</u> 0.7766 0.9269 0.9718 <u>Sprd</u> 15 15 15	0.9862 0.9806 0.9674 Perimeter 0.9877 0.9836 0.978 Brd 21 21 21 21	0.9938 0.9942 0.9967 CIst Size 0.9938 0.9923 0.9906 SIRs 44 38 44 44	0.9721 0.9729 0.9771 <u>Lat</u> 0.9864 0.9781 <u>RdGr</u> 57 51 51 51	0.9798 0.9816 0.9849 Lon 0.9916 0.9867	0.0235 0.0222 Slope 0.0078 0.0031 0.0026 Solution Diff 9 3 3 9 6 2 Diff, Sprd	0.9708 0.9723 0.974 %Urban 0.9875 0.9853 0.9853 Sprd 15 21 15 21 6 2	112635000 121113000 IntSect 93663000 87772500 87048000 Brd 21 21 20 23 3 2 are split with	504643500 528426000 580450500 Union 459931500 414810000 415669500 SIRs 44 44 47 3	0.2138 0.2132 0.2087 LeeSalee 0.2036 0.2116 0.2094 RdGr 51 63 51 63 63	3 21 9 21 3 21 2 9 21 3 21 2 Diff Sprd B 9 15 3 15 3 15 2 2 Start End Step	15 44 63 21 50 57 21 44 51 21 44 ? 21 44 7 21 44 57 21 44 57 21 50 51 21 38 51 21 ? 51
Run F Run 36 19 3 8 Run F Run 36 12 16 6 68 2 10 13 19 21 21 26 39	0.9774 0.9766 0.9809 % URBAN Pop 0.9803 0.9804 requency ir Feq. 4 2 2 2 2 2 1 1 1 1 1	0.9774 0.9766 0.9809 <u>Area</u> 0.9874 0.9803 0.9804	0.9774 0.9766 0.9809 <u>Compare</u> 0.9874 0.9803 0.9804 <u>Diff</u> 9 3 9 9	0.8924 0.8055 0.3879 <u>Clusters</u> 0.7766 0.9269 0.9718 <u>Sprd</u> 15 15 15	0.9862 0.9806 0.9674 Perimeter 0.9877 0.9836 0.978 Brd 21 21 21 21	0.9938 0.9942 0.9967 CIst Size 0.9938 0.9923 0.9906 SIRs 44 38 44 44	0.9721 0.9729 0.9771 <u>Lat</u> 0.9864 0.9781 <u>RdGr</u> 57 51 51 51	0.9798 0.9816 0.9849 Lon 0.9916 0.9867	0.0235 0.0222 Slope 0.0078 0.0031 0.0026 Solution Diff 9 3 3 9 6 2 Diff, Sprd	0.9708 0.9723 0.974 %Urban 0.9875 0.9853 Sprd 15 21 15 21 6 2	112635000 121113000 IntSect 93663000 87772500 87048000 Brd 21 21 20 23 3 2 are split with	504643500 528426000 580450500 Union 459931500 414810000 415669500 SIRs 44 44 47 3 2	0.2138 0.2132 0.2087 LeeSalee 0.2036 0.2116 0.2094 RdGr 51 63 51 63 63	3 21 9 21 3 21 2 9 21 3 21 2 Diff Sprd B 9 15 3 15 3 15 2 2 Start End Step	15 44 63 21 50 57 21 44 51 21 44 ? 21 44 7 21 44 57 21 44 57 21 50 51 21 38 51 21 ? 51
Run F Run F Run 36 3 112 16 68 2 10 13 19 21 12 26	0.9774 0.9766 0.9809 % URBAN Pop 0.9874 0.9803 0.9804 requency in Freq. 4 2 2 2 1 1 1 1 1 1 1 1 1	0.9774 0.9766 0.9809 <u>Area</u> 0.9874 0.9803 0.9804	0.9774 0.9766 0.9809 <u>Compare</u> 0.9874 0.9803 0.9804 <u>Diff</u> 9 3 9 9	0.8924 0.8055 0.3879 <u>Clusters</u> 0.7766 0.9269 0.9718 <u>Sprd</u> 15 15 15	0.9862 0.9806 0.9674 Perimeter 0.9877 0.9836 0.978 Brd 21 21 21 21	0.9938 0.9942 0.9967 CIst Size 0.9938 0.9923 0.9906 SIRs 44 38 44 44	0.9721 0.9729 0.9771 <u>Lat</u> 0.9864 0.9781 <u>RdGr</u> 57 51 51 51	0.9798 0.9816 0.9849 Lon 0.9916 0.9867	0.0235 0.0222 Slope 0.0078 0.0031 0.0026 Solution Diff 9 3 3 9 6 2 Diff, Sprd	0.9708 0.9723 0.974 %Urban 0.9875 0.9853 0.9853 Sprd 15 21 15 21 6 2	112635000 121113000 IntSect 93663000 87772500 87048000 Brd 21 21 20 23 3 2 are split with	504643500 528426000 580450500 Union 459931500 414810000 415669500 SIRs 44 44 47 3 2	0.2138 0.2132 0.2087 LeeSalee 0.2036 0.2116 0.2094 RdGr 51 63 51 63 63	3 21 9 21 3 21 2 9 21 3 21 2 Diff Sprd B 9 15 3 15 3 15 2 2 Start End Step	15 44 63 21 50 57 21 44 51 21 44 ? 21 44 7 21 44 57 21 44 57 21 50 51 21 38 51 21 ? 51
Run F Run 36 19 3 8 Run F Run 36 12 16 6 68 2 10 13 19 21 21 26 39	0.9774 0.9766 0.9809 % URBAN Pop 0.9803 0.9804 requency ir Feq. 4 2 2 2 2 2 1 1 1 1 1	0.9774 0.9766 0.9809 <u>Area</u> 0.9874 0.9803 0.9804	0.9774 0.9766 0.9809 <u>Compare</u> 0.9874 0.9803 0.9804 <u>Diff</u> 9 3 9 9	0.8924 0.8055 0.3879 <u>Clusters</u> 0.7766 0.9269 0.9718 <u>Sprd</u> 15 15 15	0.9862 0.9806 0.9674 Perimeter 0.9877 0.9836 0.978 Brd 21 21 21 21	0.9938 0.9942 0.9967 CIst Size 0.9938 0.9923 0.9906 SIRs 44 38 44 44	0.9721 0.9729 0.9771 <u>Lat</u> 0.9864 0.9781 <u>RdGr</u> 57 51 51 51	0.9798 0.9816 0.9849 Lon 0.9916 0.9867	0.0235 0.0222 Slope 0.0078 0.0031 0.0026 Solution Diff 9 3 3 9 6 2 Diff, Sprd	0.9708 0.9723 0.974 %Urban 0.9875 0.9853 0.9853 Sprd 15 21 15 21 6 2	112635000 121113000 IntSect 93663000 87772500 87048000 Brd 21 21 20 23 3 2 are split with	504643500 528426000 580450500 Union 459931500 414810000 415669500 SIRs 44 44 47 3 2	0.2138 0.2132 0.2087 LeeSalee 0.2036 0.2116 0.2094 RdGr 51 63 51 63 63	3 21 9 21 3 21 2 9 21 3 21 2 Diff Sprd B 9 15 3 15 3 15 2 2 Start End Step	15 44 63 21 50 57 21 44 51 21 44 ? 21 44 7 21 44 57 21 44 57 21 50 51 21 38 51 21 ? 51
Run 61 47 166 170 18 18 18 18 18 18 18 18 18 18 18 18 18	0.9774 0.9766 0.9809 % URBAN Pop 0.9874 0.9803 0.9804 requency in Freq. 4 2 2 2 1 1 1 1 1 1 1 1 1	0.9774 0.9766 0.9809 <u>Area</u> 0.9874 0.9803 0.9804	0.9774 0.9766 0.9809 <u>Compare</u> 0.9874 0.9803 0.9804 <u>Diff</u> 9 3 9 9	0.8924 0.8055 0.3879 <u>Clusters</u> 0.7766 0.9269 0.9718 <u>Sprd</u> 15 15 15	0.9862 0.9806 0.9674 Perimeter 0.9877 0.9836 0.978 Brd 21 21 21 21	0.9938 0.9942 0.9967 CIst Size 0.9938 0.9923 0.9906 SIRs 44 38 44 44	0.9721 0.9729 0.9771 <u>Lat</u> 0.9864 0.9781 <u>RdGr</u> 57 51 51 51	0.9798 0.9816 0.9849 Lon 0.9916 0.9867	0.0235 0.0222 Slope 0.0078 0.0031 0.0026 Solution Diff 9 3 3 9 6 2 Diff, Sprd	0.9708 0.9723 0.974 %Urban 0.9875 0.9853 0.9853 Sprd 15 21 15 21 6 2	112635000 121113000 IntSect 93663000 87772500 87048000 Brd 21 21 20 23 3 2 are split with	504643500 528426000 580450500 Union 459931500 414810000 415669500 SIRs 44 44 47 3 2	0.2138 0.2132 0.2087 LeeSalee 0.2036 0.2116 0.2094 RdGr 51 63 51 63 63	3 21 9 21 3 21 2 9 21 3 21 2 Diff Sprd B 9 15 3 15 3 15 2 2 Start End Step	15 44 63 21 50 57 21 44 51 21 44 ? 21 44 7 21 44 57 21 44 57 21 50 51 21 38 51 21 ? 51
Run 61 1 1 6 1 7 6 1 6 1 7 6 1 6 1 7 6 1 6 1	0.9774 0.9766 0.9809 % URBAN Pop 0.9874 0.9803 0.9804 requency ir Freq. 4 2 2 2 1 1 1 1 1 1 1 1 1 1	0.9774 0.9766 0.9809 <u>Area</u> 0.9874 0.9803 0.9804	0.9774 0.9766 0.9809 <u>Compare</u> 0.9874 0.9803 0.9804 <u>Diff</u> 9 3 9 9	0.8924 0.8055 0.3879 <u>Clusters</u> 0.7766 0.9269 0.9718 <u>Sprd</u> 15 15 15	0.9862 0.9806 0.9674 Perimeter 0.9877 0.9836 0.978 Brd 21 21 21 21	0.9938 0.9942 0.9967 CIst Size 0.9938 0.9923 0.9906 SIRs 44 38 44 44	0.9721 0.9729 0.9771 <u>Lat</u> 0.9864 0.9781 <u>RdGr</u> 57 51 51 51	0.9798 0.9816 0.9849 Lon 0.9916 0.9867	0.0235 0.0222 Slope 0.0078 0.0031 0.0026 Solution Diff 9 3 3 9 6 2 Diff, Sprd	0.9708 0.9723 0.974 %Urban 0.9875 0.9853 0.9853 Sprd 15 21 15 21 6 2	112635000 121113000 IntSect 93663000 87772500 87048000 Brd 21 21 20 23 3 2 are split with	504643500 528426000 580450500 Union 459931500 414810000 415669500 SIRs 44 44 47 3 2	0.2138 0.2132 0.2087 LeeSalee 0.2036 0.2116 0.2094 RdGr 51 63 51 63 63	3 21 9 21 3 21 2 9 21 3 21 2 Diff Sprd B 9 15 3 15 3 15 2 2 Start End Step	15 44 63 21 50 57 21 44 51 21 44 ? 21 44 7 21 44 57 21 44 57 21 50 51 21 38 51 21 ? 51
Run 61 47 16 TOP 3 Run 16 19 3 Run F Run 16 19 3 Run 16 19 3 12 16 68 2 10 13 3 12 2 14 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.9774 0.9766 0.9809 % URBAN Pop 0.9874 0.9803 0.9804 requency in Freq. 4 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.9774 0.9766 0.9809 <u>Area</u> 0.9874 0.9803 0.9804	0.9774 0.9766 0.9809 <u>Compare</u> 0.9874 0.9803 0.9804 <u>Diff</u> 9 3 9 9	0.8924 0.8055 0.3879 <u>Clusters</u> 0.7766 0.9269 0.9718 <u>Sprd</u> 15 15 15	0.9862 0.9806 0.9674 Perimeter 0.9877 0.9836 0.978 Brd 21 21 21 21	0.9938 0.9942 0.9967 CIst Size 0.9938 0.9923 0.9906 SIRs 44 38 44 44	0.9721 0.9729 0.9771 <u>Lat</u> 0.9864 0.9781 <u>RdGr</u> 57 51 51 51	0.9798 0.9816 0.9849 Lon 0.9916 0.9867	0.0235 0.0222 Slope 0.0078 0.0031 0.0026 Solution Diff 9 3 3 9 6 2 Diff, Sprd	0.9708 0.9723 0.974 %Urban 0.9875 0.9853 0.9853 Sprd 15 21 15 21 6 2	112635000 121113000 IntSect 93663000 87772500 87048000 Brd 21 21 20 23 3 2 are split with	504643500 528426000 580450500 Union 459931500 414810000 415669500 SIRs 44 44 47 3 2	0.2138 0.2132 0.2087 LeeSalee 0.2036 0.2116 0.2094 RdGr 51 63 51 63 63	3 21 9 21 3 21 2 9 21 3 21 2 Diff Sprd B 9 15 3 15 3 15 2 2 Start End Step	15 44 63 21 50 57 21 44 51 21 44 ? 21 44 7 21 44 57 21 44 57 21 50 51 21 38 51 21 ? 51
Run 61 147 168 170 18 18 18 18 18 18 18 18 18 18 18 18 18	0.9774 0.9766 0.9809 % URBAN Pop 0.9874 0.9803 0.9804 requency ir Freq. 4 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.9774 0.9766 0.9809 <u>Area</u> 0.9874 0.9803 0.9804	0.9774 0.9766 0.9809 <u>Compare</u> 0.9874 0.9803 0.9804 <u>Diff</u> 9 3 9 9	0.8924 0.8055 0.3879 <u>Clusters</u> 0.7766 0.9269 0.9718 <u>Sprd</u> 15 15 15	0.9862 0.9806 0.9674 Perimeter 0.9877 0.9836 0.978 Brd 21 21 21 21	0.9938 0.9942 0.9967 CIst Size 0.9938 0.9923 0.9906 SIRs 44 38 44 44	0.9721 0.9729 0.9771 <u>Lat</u> 0.9864 0.9781 <u>RdGr</u> 57 51 51 51	0.9798 0.9816 0.9849 Lon 0.9916 0.9867	0.0235 0.0222 Slope 0.0078 0.0031 0.0026 Solution Diff 9 3 3 9 6 2 Diff, Sprd	0.9708 0.9723 0.974 %Urban 0.9875 0.9853 0.9853 Sprd 15 21 15 21 6 2	112635000 121113000 IntSect 93663000 87772500 87048000 Brd 21 21 20 23 3 2 are split with	504643500 528426000 580450500 Union 459931500 414810000 415669500 SIRs 44 44 47 3 2	0.2138 0.2132 0.2087 LeeSalee 0.2036 0.2116 0.2094 RdGr 51 63 51 63 63	3 21 9 21 3 21 2 9 21 3 21 2 Diff Sprd B 9 15 3 15 3 15 2 2 Start End Step	15 44 63 21 50 57 21 44 51 21 44 ? 21 44 7 21 44 57 21 44 57 21 50 51 21 38 51 21 ? 51
Run 61 1 47 16 16 17 16 16 17 16 17 16 17 16 17 16 17 16 17 17 16 17 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 17 16 17 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16	0.9774 0.9766 0.9809 % URBAN Pop 0.9803 0.9804 requency in Freq. 4 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.9774 0.9766 0.9809 <u>Area</u> 0.9874 0.9803 0.9804	0.9774 0.9766 0.9809 <u>Compare</u> 0.9874 0.9803 0.9804 <u>Diff</u> 9 3 9 9	0.8924 0.8055 0.3879 <u>Clusters</u> 0.7766 0.9269 0.9718 <u>Sprd</u> 15 15 15	0.9862 0.9806 0.9674 Perimeter 0.9877 0.9836 0.978 Brd 21 21 21 21	0.9938 0.9942 0.9967 CIst Size 0.9938 0.9923 0.9906 SIRs 44 38 44 44	0.9721 0.9729 0.9771 <u>Lat</u> 0.9864 0.9781 <u>RdGr</u> 57 51 51 51	0.9798 0.9816 0.9849 Lon 0.9916 0.9867	0.0235 0.0222 Slope 0.0078 0.0031 0.0026 Solution Diff 9 3 3 9 6 2 Diff, Sprd	0.9708 0.9723 0.974 %Urban 0.9875 0.9853 0.9853 Sprd 15 21 15 21 6 2	112635000 121113000 IntSect 93663000 87772500 87048000 Brd 21 21 20 23 3 2 are split with	504643500 528426000 580450500 Union 459931500 414810000 415669500 SIRs 44 44 47 3 2	0.2138 0.2132 0.2087 LeeSalee 0.2036 0.2116 0.2094 RdGr 51 63 51 63 63	3 21 9 21 3 21 2 9 21 3 21 2 Diff Sprd B 9 15 3 15 3 15 2 2 Start End Step	15 44 63 21 50 57 21 44 51 21 44 ? 21 44 7 21 44 57 21 44 57 21 50 51 21 38 51 21 ? 51
Run 61 1 6 7 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7	0.9774 0.9766 0.9809 % URBAN Pop 0.9874 0.9803 0.9804 requency ir Freq. 4 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.9774 0.9766 0.9809 <u>Area</u> 0.9874 0.9803 0.9804	0.9774 0.9766 0.9809 <u>Compare</u> 0.9874 0.9803 0.9804 <u>Diff</u> 9 3 9 9	0.8924 0.8055 0.3879 <u>Clusters</u> 0.7766 0.9269 0.9718 <u>Sprd</u> 15 15 15	0.9862 0.9806 0.9674 Perimeter 0.9877 0.9836 0.978 Brd 21 21 21 21	0.9938 0.9942 0.9967 CIst Size 0.9938 0.9923 0.9906 SIRs 44 38 44 44	0.9721 0.9729 0.9771 <u>Lat</u> 0.9864 0.9781 <u>RdGr</u> 57 51 51 51	0.9798 0.9816 0.9849 Lon 0.9916 0.9867	0.0235 0.0222 Slope 0.0078 0.0031 0.0026 Solution Diff 9 3 3 9 6 2 Diff, Sprd	0.9708 0.9723 0.974 %Urban 0.9875 0.9853 0.9853 Sprd 15 21 15 21 6 2	112635000 121113000 IntSect 93663000 87772500 87048000 Brd 21 21 20 23 3 2 are split with	504643500 528426000 580450500 Union 459931500 414810000 415669500 SIRs 44 44 47 3 2	0.2138 0.2132 0.2087 LeeSalee 0.2036 0.2116 0.2094 RdGr 51 63 51 63 63	3 21 9 21 3 21 2 9 21 3 21 2 Diff Sprd B 9 15 3 15 3 15 2 2 Start End Step	15 44 63 21 50 57 21 44 51 21 44 ? 21 44 7 21 44 57 21 44 57 21 50 51 21 38 51 21 ? 51

TOP 3	LEESALEE	:												
				01	Danier - tan	01-4 01			01	0/11-6	1-101	Hada a	0 - 1	DW 0 D 01D- D-10-
Run		Area			Perimeter			Lon		%Urban		Union		Diff Sprd Brd SIRs RdGr
5	0.9773	0.9773	0.9773		0.9852	0.9926		0.9846	0.013		112335000		0.2177	
15	0.978	0.978	0.978	0.4846	0.9744			0.9843	0.0047		115822500		0.2149	
47	0.9781	0.9781	0.9781	0.1903	0.9774	0.9952	0.9729	0.9806	0.0042	0.9691	116351250	541368750	0.2149	3 21 23 47 63
														3 21 23 47 51
TOP 3	AREA													
Run		Area	Compare	Cluetore	Perimeter	Clst Size	Lat	Lon	Slope	%Urban	IntSect	Union	LeeSalee	Diff Sprd Brd SIRs RdGr
18	0.9871	0.9871	0.9871	0.8146	0.989	0.995	0.985	0.9906	0.0072	0.9852		443741250	0.2057	9 15 20 44 57
34	0.987	0.987	0.987	0.8108	0.9876			0.9912	0.0015	0.9825		453742500	0.2067	
28	0.987	0.987	0.987	0.7743	0.9865	0.9957	0.9852	0.9909	0.0008	0.9864	94440000	463743750	0.2036	
														9 15 20 44 57
TOP 3	CLUSTER													
Run	Pop	Area	Compare	Clusters	Perimeter	Clst Size	Lat	Lon	Slope	%Urban	IntSect	Union	LeeSalee	Diff Sprd Brd SIRs RdGr
41	0.9817	0.9817	0.9817		0.9749			0.9872	0.0001	0.9833		421282500	0.2067	
43	0.9795	0.9795	0.9795	0.968	0.9817		0.9799	0.9861	0.0025	0.9748		427923750	0.2075	
3	0.9823	0.9823	0.9823		0.9868		0.9801	0.9861	0.0023	0.9757		424331250	0.2113	
3	0.9623	0.9623	0.9623	0.9622	0.9000	0.9924	0.9601	0.9001	0.0012	0.9757	090/3/50	424331250	0.2113	
			_											3 15 23 47 63
		PERIMETER												
Run	Pop		Compare	Clusters	Perimeter	Clst Size	Lat	Lon		%Urban	IntSect	Union	LeeSalee	Diff Sprd Brd SIRs RdGr
18	0.9871	0.9871	0.9871	0.8146	0.989	0.995	0.985	0.9906	0.0072	0.9852	91260000	443741250	0.2057	9 15 20 44 57
34	0.987	0.987	0.987	0.8108	0.9876	0.9951	0.9854	0.9912	0.0015	0.9825	93810000	453742500	0.2067	9 15 20 44 63
3	0.9823	0.9823	0.9823	0.9622	0.9868	0.9924	0.9801	0.9861	0.0012	0.9757	89673750	424331250	0.2113	3 15 23 44 51
-														9 15 20 44 ?
TOP 2	CLUSTER	SIZE												<u> </u>
			Commerc	Cluctor	Porimeter .	Clot Ci	Lot	Lon	Clore	0/11rb	IntCost	Union	Loopala-	Diff Sprd Drd SIDs DdC-
Run		Area			Perimeter 0.0744			Lon	Slope	%Urban		Union		Diff Sprd Brd SIRs RdGr
15	0.978	0.978	0.978		0.9744			0.9843	0.0047		115822500		0.2149	
2	0.986	0.986	0.986		0.9837			0.9896	0.0001		93071250		0.2068	
23	0.9765	0.9765	0.9765	0.5301	0.9738	0.9962	0.9748	0.9829	0.0017	0.9691	115455000	541031250	0.2134	3 21 23 44 57
														3 21 23 44 51
TOP 3	HORIZONT	AL ALIGNN	IENT											
Run		Area		Clusters	Perimeter	Clst Size	Lat	Lon	Slope	%Urban	IntSect	Union	LeeSalee	Diff Sprd Brd SIRs RdGr
4	0.9866	0.9866	0.9866	0.625	0.9817			0.9916	0.003	0.9864		462060000	0.2056	
34	0.987	0.987	0.987		0.9876			0.9912	0.0015	0.9825		453742500	0.2067	
28	0.987	0.987	0.987	0.7743	0.9865	0.9957	0.9852	0.9909	0.0008	0.9864	94440000	463743750	0.2036	
														9 15 23 44 ?
TOP 3	VERTICAL	ALIGNMEN	Т											
Run	Pop	Area	Compare	Clusters	Perimeter	Clst Size	Lat	Lon	Slope	%Urban	IntSect	Union	LeeSalee	Diff Sprd Brd SIRs RdGr
4	0.9866	0.9866	0.9866	0.625	0.9817			0.9916	0.003	0.9864		462060000	0.2056	
												453742500		
3.4					0.0876		0.0854	0.0012						0 15 20 44 63
34	0.987	0.987	0.987	0.8108	0.9876	0.9951		0.9912	0.0015	0.9825			0.2067	9 15 20 44 63
34 28					0.9876 0.9865	0.9951		0.9912 0.9909	0.0015 0.0008	0.9825		463743750	0.2067 0.2036	9 15 23 47 57
28	0.987 0.987	0.987	0.987	0.8108		0.9951								
28 TOP 3	0.987 0.987 SLOPE	0.987	0.987 0.987	0.8108 0.7743	0.9865	0.9951 0.9957	0.9852		0.0008	0.9864	94440000	463743750	0.2036	9 15 23 47 57 9 15 23 44 ?
28	0.987 0.987 SLOPE	0.987	0.987 0.987	0.8108 0.7743		0.9951 0.9957					94440000		0.2036	9 15 23 47 57
28 TOP 3	0.987 0.987 SLOPE	0.987 0.987	0.987 0.987	0.8108 0.7743	0.9865	0.9951 0.9957 Clst Size	0.9852	0.9909	0.0008	0.9864 <u>%Urban</u>	94440000	463743750 <u>Union</u>	0.2036	9 15 23 47 57 9 15 23 44 ? Diff Sprd Brd SIRs RdGr
28 TOP 3 Run	0.987 0.987 SLOPE Pop	0.987 0.987 Area	0.987 0.987 Compare 0.9771	0.8108 0.7743 <u>Clusters</u> 0.0623	0.9865	0.9951 0.9957 <u>Clst Size</u> 0.9943	0.9852 <u>Lat</u> 0.976	0.9909 Lon	0.0008 Slope	0.9864 <u>%Urban</u> 0.9716	94440000 IntSect	463743750 <u>Union</u> 521403750	0.2036 LeeSalee	9 15 23 47 57 9 15 23 44 ? Diff Sprd Brd SIRs RdGr
28 TOP 3 Run 29	0.987 0.987 SLOPE Pop 0.9771 0.9776	0.987 0.987 Area 0.9771 0.9776	0.987 0.987 Compare 0.9771 0.9776	0.8108 0.7743 <u>Clusters</u> 0.0623 0.1509	0.9865 Perimeter 0.9776 0.9777	0.9951 0.9957 Clst Size 0.9943 0.9955	0.9852 <u>Lat</u> 0.976 0.9726	0.9909 Lon 0.983 0.9808	0.0008 <u>Slope</u> 0.0155 0.0138	0.9864 <u>%Urban</u> 0.9716 0.9633	94440000 IntSect 111776250 114521250	463743750 <u>Union</u> 521403750 538410000	0.2036 <u>LeeSalee</u> 0.2144 0.2127	9 15 23 47 57 9 15 23 44 ? <u>Diff Sprd Brd SIRs RdGr</u> 3 21 20 47 57 3 21 23 44 51
28 TOP 3 Run 29 7	0.987 0.987 SLOPE Pop 0.9771	0.987 0.987 Area 0.9771	0.987 0.987 Compare 0.9771	0.8108 0.7743 <u>Clusters</u> 0.0623 0.1509	0.9865 Perimeter 0.9776	0.9951 0.9957 <u>Clst Size</u> 0.9943	0.9852 <u>Lat</u> 0.976 0.9726	0.9909 <u>Lon</u> 0.983	0.0008 Slope 0.0155	0.9864 <u>%Urban</u> 0.9716 0.9633	94440000 <u>IntSect</u> 111776250	463743750 <u>Union</u> 521403750 538410000	0.2036 <u>LeeSalee</u> 0.2144	9 15 23 47 57 9 15 23 44 ? Diff Sprd Brd SIRs RdGr 3 21 20 47 57 3 21 23 44 51 3 21 20 44 51
28 TOP 3 <u>Run</u> 29 7 5	0.987 0.987 SLOPE Pop 0.9771 0.9776 0.9773	0.987 0.987 Area 0.9771 0.9776	0.987 0.987 Compare 0.9771 0.9776	0.8108 0.7743 <u>Clusters</u> 0.0623 0.1509	0.9865 Perimeter 0.9776 0.9777	0.9951 0.9957 Clst Size 0.9943 0.9955	0.9852 <u>Lat</u> 0.976 0.9726	0.9909 Lon 0.983 0.9808	0.0008 <u>Slope</u> 0.0155 0.0138	0.9864 <u>%Urban</u> 0.9716 0.9633	94440000 IntSect 111776250 114521250	463743750 <u>Union</u> 521403750 538410000	0.2036 <u>LeeSalee</u> 0.2144 0.2127	9 15 23 47 57 9 15 23 44 ? <u>Diff Sprd Brd SIRs RdGr</u> 3 21 20 47 57 3 21 23 44 51
28 TOP 3 Run 29 7 5	0.987 0.987 SLOPE <u>Pop</u> 0.9771 0.9776 0.9773	0.987 0.987 Area 0.9771 0.9776 0.9773	0.987 0.987 Compare 0.9771 0.9776 0.9773	0.8108 0.7743 <u>Clusters</u> 0.0623 0.1509 0.0911	0.9865 Perimeter 0.9776 0.9777 0.9852	0.9951 0.9957 <u>Clst Size</u> 0.9943 0.9955 0.9926	0.9852 <u>Lat</u> 0.976 0.9726 0.977	0.9909 Lon 0.983 0.9808 0.9846	0.0008 Slope 0.0155 0.0138 0.013	0.9864 <u>%Urban</u> 0.9716 0.9633 0.9661	94440000 IntSect 111776250 114521250 112335000	<u>Union</u> 521403750 538410000 516030000	0.2036 <u>LeeSalee</u> 0.2144 0.2127 0.2177	9 15 23 47 57 9 15 23 44 ? Diff Sprd Brd SIRs RdGr 3 21 20 47 57 3 21 23 44 51 3 21 20 44 51 3 21 20 44 51
28 TOP 3 Run 29 7 5 TOP 3 Run	0.987 0.987 SLOPE Pop 0.9771 0.9773 % URBAN Pop	0.987 0.987 Area 0.9771 0.9773 Area	0.987 0.987 Compare 0.9771 0.9776 0.9773	0.8108 0.7743 <u>Clusters</u> 0.0623 0.1509 0.0911 <u>Clusters</u>	0.9865 Perimeter 0.9776 0.9777 0.9852 Perimeter	0.9951 0.9957 Clst Size 0.9943 0.9955 0.9926	0.9852 <u>Lat</u> 0.976 0.9726 0.977	0.9909 Lon 0.983 0.9808 0.9846	0.0008 Slope 0.0155 0.0138 0.013	0.9864 <u>%Urban</u> 0.9716 0.9633 0.9661	94440000 IntSect 111776250 114521250 112335000 IntSect	Union 521403750 538410000 516030000 Union	0.2036 LeeSalee 0.2144 0.2127 0.2177	9 15 23 47 57 9 15 23 44 ? Diff Sprd Brd SIRs RdGr 3 21 20 47 57 3 21 23 44 51 3 21 20 44 51 Diff Sprd Brd SIRs RdGr
28 TOP 3 Run 29 7 5 TOP 3 Run 4	0.987 0.987 SLOPE <u>Pop</u> 0.9771 0.9773 % URBAN <u>Pop</u> 0.9866	0.987 0.987 Area 0.9771 0.9773 Area 0.9866	0.987 0.987 Compare 0.9771 0.9776 0.9773 Compare 0.9866	0.8108 0.7743 <u>Clusters</u> 0.0623 0.1509 0.0911 <u>Clusters</u> 0.625	0.9865 Perimeter 0.9776 0.9777 0.9852 Perimeter 0.9817	0.9951 0.9957 Clst Size 0.9943 0.9955 0.9926 Clst Size 0.9943	0.9852 Lat 0.976 0.9726 0.977 Lat 0.9873	0.9909 Lon 0.983 0.9808 0.9846 Lon 0.9916	0.0008 Slope 0.0155 0.0138 0.013 Slope 0.003	0.9864 %Urban 0.9716 0.9633 0.9661 %Urban 0.9864	94440000 IntSect 111776250 114521250 112335000 IntSect 94998750	<u>Union</u> 521403750 538410000 516030000 Union 462060000	0.2036 LeeSalee	9 15 23 47 57 9 15 23 44 ? Diff Sprd Brd SIRs RdGr 3 21 20 47 57 3 21 20 44 51 3 21 20 44 51 Jiff Sprd Brd SIRs RdGr 9 15 23 44 51
28 TOP 3 Run 29 7 5 TOP 3 Run	0.987 0.987 SLOPE Pop 0.9771 0.9773 % URBAN Pop	0.987 0.987 Area 0.9771 0.9773 Area	0.987 0.987 Compare 0.9771 0.9776 0.9773	0.8108 0.7743 <u>Clusters</u> 0.0623 0.1509 0.0911 <u>Clusters</u>	0.9865 Perimeter 0.9776 0.9777 0.9852 Perimeter	0.9951 0.9957 Clst Size 0.9943 0.9955 0.9926 Clst Size 0.9943	0.9852 <u>Lat</u> 0.976 0.9726 0.977	0.9909 Lon 0.983 0.9808 0.9846	0.0008 Slope 0.0155 0.0138 0.013	0.9864 <u>%Urban</u> 0.9716 0.9633 0.9661	94440000 IntSect 111776250 114521250 112335000 IntSect 94998750	Union 521403750 538410000 516030000 Union	0.2036 LeeSalee 0.2144 0.2127 0.2177	9 15 23 47 57 9 15 23 44 ? Diff Sprd Brd SIRs RdGr 3 21 20 47 57 3 21 20 44 51 3 21 20 44 51 Jiff Sprd Brd SIRs RdGr 9 15 23 44 51
28 TOP 3 Run 29 7 5 TOP 3 Run 4	0.987 0.987 SLOPE <u>Pop</u> 0.9771 0.9773 % URBAN <u>Pop</u> 0.9866	0.987 0.987 Area 0.9771 0.9773 Area 0.9866	0.987 0.987 Compare 0.9771 0.9776 0.9773 Compare 0.9866	0.8108 0.7743 Clusters 0.0623 0.1509 0.0911 Clusters 0.625 0.7743	0.9865 Perimeter 0.9776 0.9777 0.9852 Perimeter 0.9817	0.9951 0.9957 <u>Clst Size</u> 0.9943 0.9955 0.9926 <u>Clst Size</u> 0.9943 0.9957	0.9852 Lat 0.976 0.9726 0.977 Lat 0.9873	0.9909 Lon 0.983 0.9808 0.9846 Lon 0.9916	0.0008 Slope 0.0155 0.0138 0.013 Slope 0.003	0.9864 %Urban 0.9716 0.9633 0.9661 %Urban 0.9864	94440000 IntSect 111776250 114521250 112335000 IntSect 94998750 94440000	<u>Union</u> 521403750 538410000 516030000 Union 462060000	0.2036 LeeSalee	9 15 23 47 57 9 15 23 44 ? Diff Sprd Brd SIRs RdGr 3 21 20 47 57 3 21 23 44 51 3 21 20 44 51 3 21 20 44 51 Diff Sprd Brd SIRs RdGr 9 15 23 44 51 9 15 23 44 51 9 15 23 47 57
28 TOP 3 Run 29 7 5 TOP 3 Run 4 28	0.987 0.987 SLOPE Pop 0.9771 0.9776 0.9773 % URBAN Pop 0.9866 0.987	0.987 0.987 Area 0.9771 0.9776 0.9773 Area 0.9866 0.987	0.987 0.987 Compare 0.9771 0.9776 0.9773 Compare 0.9866 0.987	0.8108 0.7743 Clusters 0.0623 0.1509 0.0911 Clusters 0.625 0.7743	0.9865 Perimeter 0.9776 0.9777 0.9852 Perimeter 0.9817 0.9865	0.9951 0.9957 <u>Clst Size</u> 0.9943 0.9955 0.9926 <u>Clst Size</u> 0.9943 0.9957	0.9852 Lat 0.976 0.977 Lat 0.9873 0.9852	0.9909 Lon 0.983 0.9846 0.9846 Lon 0.9916 0.9909	0.0008 Slope 0.0155 0.0138 0.013 Slope 0.003 0.0008	0.9864 <u>%Urban</u> 0.9716 0.9633 0.9661 <u>%Urban</u> 0.9864 0.9864	94440000 IntSect 111776250 114521250 112335000 IntSect 94998750 94440000	Union 521403750 538410000 516030000 Union 462060000 463743750	0.2036 LeeSalee 0.2144 0.2127 0.2177 LeeSalee 0.2056 0.2036	9 15 23 47 57 9 15 23 44 ? Diff Sprd Brd SIRs RdGr 3 21 20 47 57 3 21 23 44 51 3 21 20 44 51 3 21 20 44 51 Diff Sprd Brd SIRs RdGr 9 15 23 44 51 9 15 23 44 51 9 15 23 47 57
28 TOP 3 Run 29 7 5 TOP 3 Run 4 28	0.987 0.987 SLOPE Pop 0.9771 0.9776 0.9773 % URBAN Pop 0.9866 0.987	0.987 0.987 Area 0.9771 0.9776 0.9773 Area 0.9866 0.987	0.987 0.987 Compare 0.9771 0.9776 0.9773 Compare 0.9866 0.987	0.8108 0.7743 Clusters 0.0623 0.1509 0.0911 Clusters 0.625 0.7743	0.9865 Perimeter 0.9776 0.9777 0.9852 Perimeter 0.9817 0.9865	0.9951 0.9957 <u>Clst Size</u> 0.9943 0.9955 0.9926 <u>Clst Size</u> 0.9943 0.9957	0.9852 Lat 0.976 0.977 Lat 0.9873 0.9852	0.9909 Lon 0.983 0.9846 0.9846 Lon 0.9916 0.9909	0.0008 Slope 0.0155 0.0138 0.013 Slope 0.003 0.0008	0.9864 <u>%Urban</u> 0.9716 0.9633 0.9661 <u>%Urban</u> 0.9864 0.9864	94440000 IntSect 111776250 114521250 112335000 IntSect 94998750 94440000	Union 521403750 538410000 516030000 Union 462060000 463743750	0.2036 LeeSalee 0.2144 0.2127 0.2177 LeeSalee 0.2056 0.2036	9 15 23 47 57 9 15 23 44 ? Diff Sprd Brd SIRs RdGr 3 21 20 47 57 3 21 23 44 51 3 21 20 44 51 Diff Sprd Brd SIRs RdGr 9 15 23 44 51 9 15 23 44 51 9 15 23 47 57 9 15 23 47 57
28 TOP 3 Run 29 7 5 TOP 3 Run 4 28 12	0.987 0.987 SLOPE Pop 0.9771 0.9773 % URBAN Pop 0.9866 0.987 0.9853	0.987 0.987 Area 0.9771 0.9773 Area 0.9866 0.987 0.9853	0.987 0.987 Compare 0.9771 0.9776 0.9773 Compare 0.9866 0.987	0.8108 0.7743 Clusters 0.0623 0.1509 0.0911 Clusters 0.625 0.7743	0.9865 Perimeter 0.9776 0.9777 0.9852 Perimeter 0.9817 0.9865	0.9951 0.9957 <u>Clst Size</u> 0.9943 0.9955 0.9926 <u>Clst Size</u> 0.9943 0.9957	0.9852 Lat 0.976 0.977 Lat 0.9873 0.9852	0.9909 <u>Lon</u> 0.983 0.9808 0.9846 <u>Lon</u> 0.9916 0.9909 0.99	0.0008 Slope 0.0155 0.0138 0.013 Slope 0.003 0.0008 0.0007	0.9864 <u>%Urban</u> 0.9716 0.9633 0.9661 <u>%Urban</u> 0.9864 0.9864	94440000 IntSect 111776250 114521250 112335000 IntSect 94998750 94440000	Union 521403750 538410000 516030000 Union 462060000 463743750	0.2036 LeeSalee 0.2144 0.2127 0.2177 LeeSalee 0.2056 0.2036	9 15 23 47 57 9 15 23 44 ? Diff Sprd Brd SIRs RdGr 3 21 20 47 57 3 21 23 44 51 3 21 20 44 51 Diff Sprd Brd SIRs RdGr 9 15 23 44 51 9 15 23 44 51 9 15 23 47 57 9 15 23 47 57
28 TOP 3 Run 29 7 5 TOP 3 Run 4 28 12 Run F	0.987 0.987 SLOPE Pop 0.9771 0.9776 0.9773 % URBAN Pop 0.9866 0.987 0.9853	0.987 0.987 Area 0.9771 0.9773 Area 0.9866 0.987 0.9853	0.987 0.987 0.987 0.9771 0.9776 0.9773 Compare 0.9866 0.987 0.9853	0.8108 0.7743 Clusters 0.0623 0.1509 0.0911 Clusters 0.625 0.7743 0.7267	0.9865 Perimeter	0.9951 0.9957 <u>Clst Size</u> 0.9943 0.9955 0.9926 <u>Clst Size</u> 0.9943 0.9943	0.9852 <u>Lat</u> 0.976 0.9726 0.977 <u>Lat</u> 0.9873 0.9852 0.9836	0.9909 <u>Lon</u> 0.983 0.9808 0.9846 <u>Lon</u> 0.9916 0.9909 0.99	0.0008 Slope 0.0155 0.0138 0.013 Slope 0.003 0.0008 0.0007 Solution	0.9864 %Urban 0.9716 0.9633 0.9661 %Urban 0.9864 0.9864	94440000 IntSect 111776250 114521250 112335000 IntSect 94998750 94440000 95722500	Union 521403750 538410000 516030000 Union 462060000 463743750 458070000	0.2036 LeeSalee 0.2144 0.2127 0.2177 LeeSalee 0.2056 0.2036 0.209	9 15 23 47 57 9 15 23 44 ? Diff Sprd Brd SIRs RdGr 3 21 20 47 57 3 21 23 44 51 3 21 20 44 51 Diff Sprd Brd SIRs RdGr 9 15 23 44 51 9 15 23 44 51 9 15 23 47 57 9 15 23 47 57
28 TOP 3 Run 29 7 5 TOP 3 Run 4 28 12 Run F Run	0.987 0.987 SLOPE Pop 0.9771 0.9776 0.9773 % URBAN Pop 0.9866 0.987 0.9853	0.987 0.987 Area 0.9771 0.9773 Area 0.9866 0.987 0.9853	0.987 0.987 0.987 0.9771 0.9776 0.9773 Compare 0.9866 0.987 0.9853	0.8108 0.7743 Clusters 0.0623 0.1509 0.0911 Clusters 0.625 0.7743 0.7267	0.9865 Perimeter 0.9776 0.9777 0.9852 Perimeter 0.9817 0.9865 0.9846 Brd	0.9951 0.9957 Clst Size 0.9943 0.9955 0.9926 Clst Size 0.9943 0.9957 0.9943	0.9852 Lat 0.976 0.9726 0.977 Lat 0.9873 0.9852 0.9836 RdGr	0.9909 <u>Lon</u> 0.983 0.9808 0.9846 <u>Lon</u> 0.9916 0.9909 0.99	0.0008 Slope 0.0155 0.0138 0.013 Slope 0.003 0.0008 0.0007	0.9864 <u>%Urban</u> 0.9716 0.9633 0.9661 <u>%Urban</u> 0.9864 0.9864	94440000 IntSect 111776250 114521250 112335000 IntSect 94998750 94440000	Union 521403750 538410000 516030000 Union 462060000 463743750	0.2036 LeeSalee 0.2144 0.2127 0.2177 LeeSalee 0.2056 0.2036	9 15 23 47 57 9 15 23 44 ? Diff Sprd Brd SIRs RdGr 3 21 20 47 57 3 21 23 44 51 3 21 20 44 51 Diff Sprd Brd SIRs RdGr 9 15 23 44 51 9 15 23 44 51 9 15 23 47 57 9 15 23 47 57
28 TOP 3 Run 29 7 5 TOP 3 Run 4 28 12 Run F Run 28	0.987 0.987 SLOPE Pop 0.9771 0.9776 0.9773 % URBAN Pop 0.9866 0.987 0.9853 requency in Freq. 4	0.987 0.987 Area 0.9771 0.9773 Area 0.9866 0.987 0.9853	0.987 0.987 0.987 0.9771 0.9776 0.9773 Compare 0.9866 0.987 0.9853	0.8108 0.7743 Clusters 0.0623 0.1509 0.0911 Clusters 0.625 0.7743 0.7267	0.9865 Perimeter 0.9776 0.9777 0.9852 Perimeter 0.9817 0.9865 0.9846 Brd 23	0.9951 0.9957 Clst Size 0.9943 0.9955 0.9926 Clst Size 0.9943 0.9957 0.9943	0.9852 Lat 0.976 0.9726 0.977 Lat 0.9873 0.9852 0.9836 RdGr 57	0.9909 <u>Lon</u> 0.983 0.9808 0.9846 <u>Lon</u> 0.9916 0.9909 0.99	0.0008 Slope 0.0155 0.0138 0.013 Slope 0.003 0.0008 0.0007 Solution	0.9864 %Urban 0.9716 0.9633 0.9661 %Urban 0.9864 0.9864	94440000 IntSect 111776250 114521250 112335000 IntSect 94998750 94440000 95722500	Union 521403750 538410000 516030000 Union 462060000 463743750 458070000	0.2036 LeeSalee 0.2144 0.2127 0.2177 LeeSalee 0.2056 0.2036 0.209	9 15 23 47 57 9 15 23 44 ? Diff Sprd Brd SIRs RdGr 3 21 20 47 57 3 21 23 44 51 3 21 20 44 51 Diff Sprd Brd SIRs RdGr 9 15 23 44 51 9 15 23 44 51 9 15 23 47 57 9 15 23 47 57
28 TOP 3 Run 29 7 5 TOP 3 Run 4 28 12 Run F Run 28 34	0.987 0.987 SLOPE Pop 0.9776 0.9773 % URBAN Pop 0.9866 0.9853 requency in Freq. 4	0.987 0.987 Area 0.9771 0.9773 Area 0.9866 0.987 0.9853	0.987 0.987 Compare 0.9771 0.9773 Compare 0.9866 0.987 0.9853	0.8108 0.7743 Clusters 0.0623 0.1509 0.0911 Clusters 0.625 0.77267 Sprd 15 15	0.9865 Perimeter 0.9776 0.9776 0.9852 Perimeter 0.9817 0.9865 0.9846 Brd 23 20	0.9951 0.9957 CIst Size 0.9943 0.9955 0.9926 CIst Size 0.9943 0.9957 0.9943 SIRS 47	0.9852 Lat 0.976 0.9726 0.977 Lat 0.9873 0.9852 0.9836 RdGr 57 63	0.9909 <u>Lon</u> 0.983 0.9808 0.9846 <u>Lon</u> 0.9916 0.9909 0.99	0.0008 Slope 0.0155 0.0138 0.013 Slope 0.003 0.0008 0.0007 Solution	0.9864 %Urban 0.9716 0.9633 0.9661 %Urban 0.9864 0.9864	94440000 IntSect 111776250 114521250 112335000 IntSect 94998750 94440000 95722500	Union 521403750 538410000 516030000 Union 462060000 463743750 458070000	0.2036 LeeSalee 0.2144 0.2127 0.2177 LeeSalee 0.2056 0.2036 0.209	9 15 23 47 57 9 15 23 44 ? Diff Sprd Brd SIRs RdGr 3 21 20 47 57 3 21 23 44 51 3 21 20 44 51 Diff Sprd Brd SIRs RdGr 9 15 23 44 51 9 15 23 44 51 9 15 23 47 57 9 15 23 47 51 9 15 23 47 51
28 TOP 3 Run 29 7 5 TOP 3 Run 4 28 12 Run F Run 28	0.987 0.987 SLOPE Pop 0.9771 0.9776 0.9773 % URBAN Pop 0.9866 0.987 0.9853 requency in Freq. 4	0.987 0.987 Area 0.9771 0.9773 Area 0.9866 0.987 0.9853	0.987 0.987 0.987 0.9771 0.9776 0.9773 Compare 0.9866 0.987 0.9853	0.8108 0.7743 Clusters 0.0623 0.1509 0.0911 Clusters 0.625 0.7743 0.7267	0.9865 Perimeter 0.9776 0.9777 0.9852 Perimeter 0.9817 0.9865 0.9846 Brd 23	0.9951 0.9957 Clst Size 0.9943 0.9955 0.9926 Clst Size 0.9943 0.9957 0.9943	0.9852 Lat 0.976 0.9726 0.977 Lat 0.9873 0.9852 0.9836 RdGr 57	0.9909 <u>Lon</u> 0.983 0.9808 0.9846 <u>Lon</u> 0.9916 0.9909 0.99	0.0008 Slope 0.0155 0.0138 0.013 Slope 0.003 0.0008 0.0007 Solution	0.9864 %Urban 0.9716 0.9633 0.9661 %Urban 0.9864 0.9864	94440000 IntSect 111776250 114521250 112335000 IntSect 94998750 94440000 95722500	Union 521403750 538410000 516030000 Union 462060000 463743750 458070000	0.2036 LeeSalee 0.2144 0.2127 0.2177 LeeSalee 0.2056 0.2036 0.209	9 15 23 47 57 9 15 23 44 ? Diff Sprd Brd SIRs RdGr 3 21 20 47 57 3 21 23 44 51 3 21 20 44 51 Diff Sprd Brd SIRs RdGr 9 15 23 44 51 9 15 23 44 51 9 15 23 47 57 9 15 23 47 57
28 TOP 3 Run 29 7 5 TOP 3 Run 4 28 12 Run F Run 28 34	0.987 0.987 SLOPE Pop 0.9776 0.9773 % URBAN Pop 0.9866 0.9853 requency in Freq. 4	0.987 0.987 Area 0.9771 0.9773 Area 0.9866 0.987 0.9853	0.987 0.987 Compare 0.9771 0.9773 Compare 0.9866 0.987 0.9853	0.8108 0.7743 Clusters 0.0623 0.1509 0.0911 Clusters 0.625 0.77267 Sprd 15 15	0.9865 Perimeter 0.9776 0.9776 0.9852 Perimeter 0.9817 0.9865 0.9846 Brd 23 20	0.9951 0.9957 CIst Size 0.9943 0.9955 0.9926 CIst Size 0.9943 0.9957 0.9943 SIRS 47	0.9852 Lat 0.976 0.9726 0.977 Lat 0.9873 0.9852 0.9836 RdGr 57 63	0.9909 <u>Lon</u> 0.983 0.9808 0.9846 <u>Lon</u> 0.9916 0.9909 0.99	0.0008 Slope 0.0155 0.0138 0.013 Slope 0.003 0.0008 0.0007 Solution	0.9864 %Urban 0.9716 0.9633 0.9661 %Urban 0.9864 0.9864	94440000 IntSect 111776250 114521250 112335000 IntSect 94998750 94440000 95722500	Union 521403750 538410000 516030000 Union 462060000 463743750 458070000	0.2036 LeeSalee 0.2144 0.2127 0.2177 LeeSalee 0.2056 0.2036 0.209	9 15 23 47 57 9 15 23 44 ? Diff Sprd Brd SIRs RdGr 3 21 20 47 57 3 21 23 44 51 3 21 20 44 51 Diff Sprd Brd SIRs RdGr 9 15 23 44 51 9 15 23 44 51 9 15 23 47 57 9 15 23 47 51 9 15 23 47 51
28 TOP 3 Run 29 7 5 TOP 3 Run 4 28 12 Run F Run 28 34 4	0.987 0.987 SLOPE Pop 0.9771 0.9776 0.9773 % URBAN Pop 0.9866 0.987 0.9853 requency in Freq. 4 4 4 3	0.987 0.987 Area 0.9771 0.9773 Area 0.9866 0.987 0.9853	0.987 0.987 0.987 0.9771 0.9776 0.9773 Compare 0.9866 0.987 0.9853	0.8108 0.7743 <u>Clusters</u> 0.0623 0.1509 0.0911 <u>Clusters</u> 0.625 0.7743 0.7267 <u>Sprd</u> 15 15 15	0.9865 Perimeter 0.9776 0.9777 0.9852 Perimeter 0.9817 0.9865 0.9846 Brd 23 20 23	0.9951 0.9957 Clst Size 0.9943 0.9955 0.9926 Clst Size 0.9943 0.9957 0.9943 SIRS 47 44 44	0.9852 Lat 0.976 0.9726 0.977 Lat 0.9873 0.9852 0.9836 RdGr 57 63 51	0.9909 <u>Lon</u> 0.983 0.9808 0.9846 <u>Lon</u> 0.9916 0.9909 0.99	0.0008 Slope 0.0155 0.0138 0.013 Slope 0.003 0.0008 0.0007 Solution	0.9864 %Urban 0.9716 0.9633 0.9661 %Urban 0.9864 0.9864	94440000 IntSect 111776250 114521250 112335000 IntSect 94998750 94440000 95722500	Union 521403750 538410000 516030000 Union 462060000 463743750 458070000	0.2036 LeeSalee 0.2144 0.2127 0.2177 LeeSalee 0.2056 0.2036 0.209	9 15 23 47 57 9 15 23 44 ? Diff Sprd Brd SIRs RdGr 3 21 20 47 57 3 21 23 44 51 3 21 20 44 51 Diff Sprd Brd SIRs RdGr 9 15 23 44 51 9 15 23 44 51 9 15 23 47 57 9 15 23 47 51 9 15 23 47 51
28 TOP 3 Run 29 7 5 TOP 3 Run 4 28 12 Run F Run 28 34 4 3 5	0.987 0.987 SLOPE Pop 0.9776 0.9773 % URBAN Pop 0.9866 0.987 0.9853 requency in Freg. 4 4 4 3 2 2	0.987 0.987 Area 0.9771 0.9773 Area 0.9866 0.987 0.9853	0.987 0.987 0.987 0.9771 0.9776 0.9773 Compare 0.9866 0.987 0.9853	0.8108 0.7743 Clusters 0.0623 0.1509 0.0911 Clusters 0.625 0.7743 0.7267 Sprd 15 15 15 15 15 15	0.9865 Perimeter 0.9776 0.9777 0.9852 Perimeter 0.9865 0.9846 Brd 23 20 23 23 23	0.9951 0.9957 Clst Size 0.9943 0.9955 0.9926 Clst Size 0.9943 0.9957 0.9943 SIRS 47 44 44 44	0.9852 Lat	0.9909 <u>Lon</u> 0.983 0.9808 0.9846 <u>Lon</u> 0.9916 0.9909 0.99	0.0008 Slope 0.0155 0.0138 0.013 Slope 0.003 0.0008 0.0007 Solution	0.9864 %Urban 0.9716 0.9633 0.9661 %Urban 0.9864 0.9864	94440000 IntSect 111776250 114521250 112335000 IntSect 94998750 94440000 95722500	Union 521403750 538410000 516030000 Union 462060000 463743750 458070000	0.2036 LeeSalee 0.2144 0.2127 0.2177 LeeSalee 0.2056 0.2036 0.209	9 15 23 47 57 9 15 23 44 ? Diff Sprd Brd SIRs RdGr 3 21 20 44 51 3 21 20 44 51 3 21 20 44 51 3 21 20 44 51 3 21 20 44 51 Diff Sprd Brd SIRs RdGr 9 15 23 44 51 9 15 23 47 57 9 15 23 47 51 9 15 23 47 51 9 15 23 47 51 9 15 23 47 51 9 15 23 47 51 9 15 23 47 51 9 15 23 47 51
28 TOP 3 Run 29 7 5 TOP 3 Run 4 28 12 Run Fi Run 28 34 4 3 5 15	0.987 0.987 SLOPE Pop 0.9771 0.9776 0.9773 % URBAN Pop 0.9866 0.987 0.9853 requency in Freq. 4 4 3 3 2 2	0.987 0.987 Area 0.9771 0.9773 Area 0.9866 0.987 0.9853	0.987 0.987 0.987 0.9771 0.9776 0.9773 Compare 0.9866 0.987 0.9853 Diff 9 9 9 9 3 3 3 3	0.8108 0.7743 Clusters 0.0623 0.1509 0.0911 Clusters 0.625 0.7743 0.7267 Sprd 15 15 15 15 21	0.9865 Perimeter 0.9776 0.9777 0.9852 Perimeter 0.9817 0.9865 0.9846 Brd 23 20 23 23 20 23 20 23	0.9951 0.9957 Clst Size 0.9943 0.9955 0.9926 Clst Size 0.9943 0.9957 0.9943 SIRS 47 44 44 44 44 44 44	0.9852 Lat 0.976 0.9726 0.977 Lat 0.9852 0.9836 RdGr 57 63 51 51 51 51	0.9909 <u>Lon</u> 0.983 0.9808 0.9846 <u>Lon</u> 0.9916 0.9909 0.99	0.0008 Slope 0.0155 0.0138 0.013 Slope 0.003 0.0008 0.0007 Solution	0.9864 %Urban 0.9716 0.9633 0.9661 %Urban 0.9864 0.9864	94440000 IntSect 111776250 114521250 112335000 IntSect 94998750 94440000 95722500	Union 521403750 538410000 516030000 Union 462060000 463743750 458070000	0.2036 LeeSalee 0.2144 0.2127 0.2177 LeeSalee 0.2056 0.2036 0.209	9 15 23 47 57 9 15 23 44 7 Diff Sprd Brd SIRs RdGr 3 21 20 44 51 3 21 20 44 51 3 21 20 44 51 Diff Sprd Brd SIRs RdGr 9 15 23 47 57 9 15 23 47 51 9 15 23 47 51 Start End
28 TOP 3 Run 29 7 5 TOP 3 Run 4 28 12 Run F Run 28 34 4 3 5 15 15	0.987 0.987 SLOPE Pop 0.9771 0.9773 % URBAN Pop 0.9866 0.987 0.9853 requency in Freq. 4 4 3 2 2 2 2	0.987 0.987 Area 0.9771 0.9773 Area 0.9866 0.987 0.9853	0.987 0.987 0.987 0.9771 0.9776 0.9773 Compare 0.9866 0.987 0.9853	0.8108 0.7743 Clusters 0.0623 0.1509 0.0911 Clusters 0.625 0.7743 0.7267 Sprd 15 15 15 15 15 15	0.9865 Perimeter 0.9776 0.9777 0.9852 Perimeter 0.9865 0.9846 Brd 23 20 23 23 23	0.9951 0.9957 Clst Size 0.9943 0.9955 0.9926 Clst Size 0.9943 0.9957 0.9943 SIRS 47 44 44 44	0.9852 Lat	0.9909 <u>Lon</u> 0.983 0.9808 0.9846 <u>Lon</u> 0.9916 0.9909 0.99	0.0008 Slope 0.0155 0.0138 0.013 Slope 0.003 0.0008 0.0007 Solution	0.9864 %Urban 0.9716 0.9633 0.9661 %Urban 0.9864 0.9864	94440000 IntSect 111776250 114521250 112335000 IntSect 94998750 94440000 95722500	Union 521403750 538410000 516030000 Union 462060000 463743750 458070000	0.2036 LeeSalee 0.2144 0.2127 0.2177 LeeSalee 0.2056 0.2036 0.209	9 15 23 47 57 9 15 23 44 ? Diff Sprd Brd SIRs RdGr 3 21 20 44 51 3 21 20 44 51 3 21 20 44 51 3 21 20 44 51 3 21 20 44 51 Diff Sprd Brd SIRs RdGr 9 15 23 44 51 9 15 23 47 57 9 15 23 47 51 9 15 23 47 51 9 15 23 47 51 9 15 23 47 51 9 15 23 47 51 9 15 23 47 51 9 15 23 47 51
28 TOP 3 Run 29 7 5 TOP 3 Run 4 28 12 Run F Run 28 34 4 3 5 15 18 2	0.987 0.987 SLOPE Pop 0.9776 0.9773 % URBAN Pop 0.9866 0.987 0.9853 requency in Freg. 4 4 3 2 2 2 2 2	0.987 0.987 Area 0.9771 0.9773 Area 0.9866 0.987 0.9853	0.987 0.987 0.987 0.9771 0.9776 0.9773 Compare 0.9866 0.987 0.9853 Diff 9 9 9 9 3 3 3 3	0.8108 0.7743 Clusters 0.0623 0.1509 0.0911 Clusters 0.625 0.7743 0.7267 Sprd 15 15 15 15 21	0.9865 Perimeter 0.9776 0.9777 0.9852 Perimeter 0.9817 0.9865 0.9846 Brd 23 20 23 23 20 23 20 23	0.9951 0.9957 Clst Size 0.9943 0.9955 0.9926 Clst Size 0.9943 0.9957 0.9943 SIRS 47 44 44 44 44 44 44	0.9852 Lat 0.976 0.9726 0.977 Lat 0.9852 0.9836 RdGr 57 63 51 51 51 51	0.9909 <u>Lon</u> 0.983 0.9808 0.9846 <u>Lon</u> 0.9916 0.9909 0.99	0.0008 Slope 0.0155 0.0138 0.013 Slope 0.003 0.0008 0.0007 Solution Diff	0.9864 * <u>%Urban</u> 0.9716 0.9633 0.9661 * <u>%Urban</u> 0.9864 0.9864 0.9864 Sprd	94440000 IntSect 111776250 114521250 112335000 IntSect 94998750 94440000 95722500 Brd	463743750 Union 521403750 538410000 516030000 Union 462060000 463743750 458070000	0.2036 LeeSalee 0.2144 0.2127 0.2177 LeeSalee 0.2056 0.2036 0.209 RdGr	9 15 23 47 57 9 15 23 44 7 Diff Sprd Brd SIRs RdGr 3 21 20 44 51 3 21 20 44 51 3 21 20 44 51 Diff Sprd Brd SIRs RdGr 9 15 23 44 51 9 15 23 47 57 9 15 23 47 57 9 15 23 47 51 Start End Step
28 TOP 3 Run 29 7 5 TOP 3 Run 4 28 12 Run F Run 28 34 4 3 5 15 18 2 7	0.987 0.987 SLOPE Pop 0.9771 0.9776 0.9773 % URBAN Pop 0.9866 0.9867 0.9853 requency in Freq. 4 4 4 3 3 2 2 2 2 2 1 1	0.987 0.987 Area 0.9771 0.9773 Area 0.9866 0.987 0.9853	0.987 0.987 0.987 0.9771 0.9776 0.9773 Compare 0.9866 0.987 0.9853 Diff 9 9 9 9 3 3 3 3	0.8108 0.7743 Clusters 0.0623 0.1509 0.0911 Clusters 0.625 0.7743 0.7267 Sprd 15 15 15 15 21	0.9865 Perimeter 0.9776 0.9777 0.9852 Perimeter 0.9817 0.9865 0.9846 Brd 23 20 23 23 20 23 20 23	0.9951 0.9957 Clst Size 0.9943 0.9955 0.9926 Clst Size 0.9943 0.9957 0.9943 SIRS 47 44 44 44 44 44 44	0.9852 Lat 0.976 0.9726 0.977 Lat 0.9852 0.9836 RdGr 57 63 51 51 51 51	0.9909 <u>Lon</u> 0.983 0.9808 0.9846 <u>Lon</u> 0.9916 0.9909 0.99	0.0008 Slope 0.0155 0.0138 0.013 Slope 0.003 0.0008 0.0007 Solution Diff	0.9864 %Urban 0.9716 0.9633 0.9661 %Urban 0.9864 0.9864	94440000 IntSect 111776250 114521250 112335000 IntSect 94998750 94440000 95722500	Union 521403750 538410000 516030000 Union 462060000 463743750 458070000	0.2036 LeeSalee 0.2144 0.2127 0.2177 LeeSalee 0.2056 0.2036 0.209	9 15 23 47 57 9 15 23 44 7 Diff Sprd Brd SIRs RdGr 3 21 20 44 51 3 21 20 44 51 3 21 20 44 51 Diff Sprd Brd SIRs RdGr 9 15 23 47 57 9 15 23 47 51 9 15 23 47 51 Start End
TOP 3 Run 4 28 12 Run F Run 5 15 15 18 2 7 7 12	0.987 0.987 SLOPE Pop 0.9771 0.9773 % URBAN Pop 0.9866 0.987 0.9853 requency in Freq. 4 4 3 3 2 2 2 2 1 1	0.987 0.987 Area 0.9771 0.9773 Area 0.9866 0.987 0.9853	0.987 0.987 0.987 0.9771 0.9776 0.9773 Compare 0.9866 0.987 0.9853 Diff 9 9 9 9 3 3 3 3	0.8108 0.7743 Clusters 0.0623 0.1509 0.0911 Clusters 0.625 0.7743 0.7267 Sprd 15 15 15 15 21	0.9865 Perimeter 0.9776 0.9777 0.9852 Perimeter 0.9817 0.9865 0.9846 Brd 23 20 23 23 20 23 20 23	0.9951 0.9957 Clst Size 0.9943 0.9955 0.9926 Clst Size 0.9943 0.9957 0.9943 SIRS 47 44 44 44 44 44 44	0.9852 Lat 0.976 0.9726 0.977 Lat 0.9852 0.9836 RdGr 57 63 51 51 51 51	0.9909 Lon 0.983 0.9808 0.9846 Lon 0.9916 0.9909 0.99	0.0008 Slope 0.0158 0.0138 0.013 Slope 0.003 0.0008 0.0007 Solution Diff #DIV/0!	0.9864 %Urban 0.9716 0.9633 0.9661 %Urban 0.9864 0.9864 Sprd #DIV/0!	94440000 IntSect 111776250 114521250 112335000 IntSect 94998750 949440000 95722500 Brd #DIV/0!	463743750 <u>Union</u> 521403750 538410000 516030000 <u>Union</u> 462060000 463743750 458070000 <u>SIRs</u> #DIV/0!	0.2036 LeeSalee 0.2144 0.2127 0.2177 LeeSalee 0.2056 0.2056 0.2099 RdGr	9 15 23 47 57 9 15 23 44 7 Diff Sprd Brd SIRs RdGr 3 21 20 44 51 3 21 20 44 51 3 21 20 44 51 Diff Sprd Brd SIRs RdGr 9 15 23 44 51 9 15 23 47 57 9 15 23 47 57 9 15 23 47 51 Start End Step
TOP 3 Run 29 7 5 TOP 3 Run 4 28 8 12 Run Fi Run 5 15 15 18 2 7 7 12 23 3	0.987 0.987 SLOPE Pop 0.9771 0.9776 0.9773 % URBAN Pop 0.9866 0.9867 0.9853 requency in Freq. 4 4 4 3 3 2 2 2 2 2 1 1	0.987 0.987 Area 0.9771 0.9773 Area 0.9866 0.987 0.9853	0.987 0.987 0.987 0.9771 0.9776 0.9773 Compare 0.9866 0.987 0.9853 Diff 9 9 9 9 3 3 3 3	0.8108 0.7743 Clusters 0.0623 0.1509 0.0911 Clusters 0.625 0.7743 0.7267 Sprd 15 15 15 15 21	0.9865 Perimeter 0.9776 0.9777 0.9852 Perimeter 0.9817 0.9865 0.9846 Brd 23 20 23 23 20 23 20 23	0.9951 0.9957 Clst Size 0.9943 0.9955 0.9926 Clst Size 0.9943 0.9957 0.9943 SIRS 47 44 44 44 44 44 44	0.9852 Lat 0.976 0.9726 0.977 Lat 0.9852 0.9836 RdGr 57 63 51 51 51 51	0.9909 Lon 0.983 0.9808 0.9846 Lon 0.9916 0.9909 0.99	0.0008 Slope 0.0158 0.0138 0.013 Slope 0.003 0.0008 0.0007 Solution Diff #DIV/0!	0.9864 %Urban 0.9716 0.9633 0.9661 %Urban 0.9864 0.9864 Sprd #DIV/0!	94440000 IntSect 111776250 114521250 112335000 IntSect 94998750 94440000 95722500 Brd	463743750 <u>Union</u> 521403750 538410000 516030000 <u>Union</u> 462060000 463743750 458070000 <u>SIRs</u> #DIV/0!	0.2036 LeeSalee 0.2144 0.2127 0.2177 LeeSalee 0.2056 0.2056 0.2099 RdGr	9 15 23 47 57 9 15 23 44 7 Diff Sprd Brd SIRs RdGr 3 21 20 44 51 3 21 20 44 51 3 21 20 44 51 Diff Sprd Brd SIRs RdGr 9 15 23 44 51 9 15 23 47 57 9 15 23 47 57 9 15 23 47 51 Start End Step
TOP 3 Run 29 7 5 TOP 3 Run 4 8 12 Run F Run 1 8 34 4 4 3 3 5 15 18 2 2 7 12 2 23 29 29	0.987 0.987 SLOPE Pop 0.9771 0.9773 % URBAN Pop 0.9866 0.987 0.9853 requency in Freq. 4 4 3 3 2 2 2 2 1 1	0.987 0.987 Area 0.9771 0.9773 Area 0.9866 0.987 0.9853	0.987 0.987 0.987 0.9771 0.9776 0.9773 Compare 0.9866 0.987 0.9853 Diff 9 9 9 9 3 3 3 3	0.8108 0.7743 Clusters 0.0623 0.1509 0.0911 Clusters 0.625 0.7743 0.7267 Sprd 15 15 15 15 21	0.9865 Perimeter 0.9776 0.9777 0.9852 Perimeter 0.9817 0.9865 0.9846 Brd 23 20 23 23 20 23 20 23	0.9951 0.9957 Clst Size 0.9943 0.9955 0.9926 Clst Size 0.9943 0.9957 0.9943 SIRS 47 44 44 44 44 44 44	0.9852 Lat 0.976 0.9726 0.977 Lat 0.9852 0.9836 RdGr 57 63 51 51 51 51	0.9909 Lon 0.983 0.9808 0.9846 Lon 0.9916 0.9909 0.99	0.0008 Slope 0.0158 0.0138 0.013 Slope 0.003 0.0008 0.0007 Solution Diff #DIV/0!	0.9864 %Urban 0.9716 0.9633 0.9661 %Urban 0.9864 0.9864 Sprd #DIV/0!	94440000 IntSect 111776250 114521250 112335000 IntSect 94998750 949440000 95722500 Brd #DIV/0!	463743750 <u>Union</u> 521403750 538410000 516030000 <u>Union</u> 462060000 463743750 458070000 <u>SIRs</u> #DIV/0!	0.2036 LeeSalee 0.2144 0.2127 0.2177 LeeSalee 0.2056 0.2056 0.2099 RdGr	9 15 23 47 57 9 15 23 44 7 Diff Sprd Brd SIRs RdGr 3 21 20 44 51 3 21 20 44 51 3 21 20 44 51 Diff Sprd Brd SIRs RdGr 9 15 23 44 51 9 15 23 47 57 9 15 23 47 57 9 15 23 47 51 Start End Step
TOP 3 Run 29 7 5 TOP 3 Run 4 28 8 12 Run Fi Run 5 15 15 18 2 7 7 12 23 3	0.987 0.987 SLOPE Pop 0.9776 0.9773 % URBAN Pop 0.9863 requency in Freg. 4 4 3 2 2 2 2 2 2 1 1 1	0.987 0.987 Area 0.9771 0.9773 Area 0.9866 0.987 0.9853	0.987 0.987 0.987 0.9771 0.9776 0.9773 Compare 0.9866 0.987 0.9853 Diff 9 9 9 9 3 3 3 3	0.8108 0.7743 Clusters 0.0623 0.1509 0.0911 Clusters 0.625 0.7743 0.7267 Sprd 15 15 15 15 21	0.9865 Perimeter 0.9776 0.9777 0.9852 Perimeter 0.9817 0.9865 0.9846 Brd 23 20 23 23 20 23 20 23	0.9951 0.9957 Clst Size 0.9943 0.9955 0.9926 Clst Size 0.9943 0.9957 0.9943 SIRS 47 44 44 44 44 44 44	0.9852 Lat 0.976 0.9726 0.977 Lat 0.9852 0.9836 RdGr 57 63 51 51 51 51	0.9909 Lon 0.983 0.9808 0.9846 Lon 0.9916 0.9909 0.99	0.0008 Slope 0.0158 0.0138 0.013 Slope 0.003 0.0008 0.0007 Solution Diff #DIV/0!	0.9864 %Urban 0.9716 0.9633 0.9661 %Urban 0.9864 0.9864 Sprd #DIV/0!	94440000 IntSect 111776250 114521250 112335000 IntSect 94998750 949440000 95722500 Brd #DIV/0!	463743750 <u>Union</u> 521403750 538410000 516030000 <u>Union</u> 462060000 463743750 458070000 <u>SIRs</u> #DIV/0!	0.2036 LeeSalee 0.2144 0.2127 0.2177 LeeSalee 0.2056 0.2056 0.2099 RdGr	9 15 23 47 57 9 15 23 44 7 Diff Sprd Brd SIRs RdGr 3 21 20 44 51 3 21 20 44 51 3 21 20 44 51 Diff Sprd Brd SIRs RdGr 9 15 23 44 51 9 15 23 47 57 9 15 23 47 57 9 15 23 47 51 Start End Step
TOP 3 Run 29 7 5 TOP 3 Run 4 8 12 Run F Run 1 8 34 4 4 3 3 5 15 18 2 2 7 12 2 23 29 29	0.987 0.987 SLOPE Pop 0.9771 0.9776 0.9773 % URBAN Pop 0.9863 0.9853 requency in Freq. 4 4 3 2 2 2 2 2 1 1 1	0.987 0.987 Area 0.9771 0.9773 Area 0.9866 0.987 0.9853	0.987 0.987 0.987 0.9771 0.9776 0.9773 Compare 0.9866 0.987 0.9853 Diff 9 9 9 9 3 3 3 3	0.8108 0.7743 Clusters 0.0623 0.1509 0.0911 Clusters 0.625 0.7743 0.7267 Sprd 15 15 15 15 21	0.9865 Perimeter 0.9776 0.9777 0.9852 Perimeter 0.9817 0.9865 0.9846 Brd 23 20 23 23 20 23 20 23	0.9951 0.9957 Clst Size 0.9943 0.9955 0.9926 Clst Size 0.9943 0.9957 0.9943 SIRS 47 44 44 44 44 44 44	0.9852 Lat 0.976 0.9726 0.977 Lat 0.9852 0.9836 RdGr 57 63 51 51 51 51	0.9909 Lon 0.983 0.9808 0.9846 Lon 0.9916 0.9909 0.99	0.0008 Slope 0.0158 0.0138 0.013 Slope 0.003 0.0008 0.0007 Solution Diff #DIV/0!	0.9864 %Urban 0.9716 0.9633 0.9661 %Urban 0.9864 0.9864 Sprd #DIV/0!	94440000 IntSect 111776250 114521250 112335000 IntSect 94998750 949440000 95722500 Brd #DIV/0!	463743750 <u>Union</u> 521403750 538410000 516030000 <u>Union</u> 462060000 463743750 458070000 <u>SIRs</u> #DIV/0!	0.2036 LeeSalee 0.2144 0.2127 0.2177 LeeSalee 0.2056 0.2056 0.2099 RdGr	9 15 23 47 57 9 15 23 44 7 Diff Sprd Brd SIRs RdGr 3 21 20 44 51 3 21 20 44 51 3 21 20 44 51 Diff Sprd Brd SIRs RdGr 9 15 23 44 51 9 15 23 47 57 9 15 23 47 57 9 15 23 47 51 Start End Step
TOP 3 Run 29 7 5 5 TOP 3 Run 4 4 2 2 3 2 9 7 12 2 3 2 9 4 1	0.987 0.987 SLOPE Pop 0.9771 0.9776 0.9876 0.9866 0.987 0.9853 requency in Freq. 4 4 3 2 2 2 2 1 1 1 1	0.987 0.987 Area 0.9771 0.9773 Area 0.9866 0.987 0.9853	0.987 0.987 0.987 0.9771 0.9776 0.9773 Compare 0.9866 0.987 0.9853 Diff 9 9 9 9 3 3 3 3	0.8108 0.7743 Clusters 0.0623 0.1509 0.0911 Clusters 0.625 0.7743 0.7267 Sprd 15 15 15 15 21	0.9865 Perimeter 0.9776 0.9777 0.9852 Perimeter 0.9817 0.9865 0.9846 Brd 23 20 23 23 20 23 20 23	0.9951 0.9957 Clst Size 0.9943 0.9955 0.9926 Clst Size 0.9943 0.9957 0.9943 SIRS 47 44 44 44 44 44 44	0.9852 Lat 0.976 0.9726 0.977 Lat 0.9852 0.9836 RdGr 57 63 51 51 51 51	0.9909 Lon 0.983 0.9808 0.9846 Lon 0.9916 0.9909 0.99	0.0008 Slope 0.0158 0.0138 0.013 Slope 0.003 0.0008 0.0007 Solution Diff #DIV/0!	0.9864 %Urban 0.9716 0.9633 0.9661 %Urban 0.9864 0.9864 Sprd #DIV/0!	94440000 IntSect 111776250 114521250 112335000 IntSect 94998750 949440000 95722500 Brd #DIV/0!	463743750 <u>Union</u> 521403750 538410000 516030000 <u>Union</u> 462060000 463743750 458070000 <u>SIRs</u> #DIV/0!	0.2036 LeeSalee 0.2144 0.2127 0.2177 LeeSalee 0.2056 0.2056 0.2099 RdGr	9 15 23 47 57 9 15 23 44 7 Diff Sprd Brd SIRs RdGr 3 21 20 44 51 3 21 20 44 51 3 21 20 44 51 Diff Sprd Brd SIRs RdGr 9 15 23 44 51 9 15 23 47 57 9 15 23 47 57 9 15 23 47 51 Start End Step

TOP 3	LEESALEE														
	Pop		Compare	Clusters	Perimeter	Clst Size	Lat	Lon	Slone	%Urban	IntSect	Union	LeeSalee	Diff Sprd Brd SIRs R	dGr
47	0.9729	0.9729	0 9729	0.0044	0.97	0.01 0.20	0.9686	0.9773	0.008	0.9616	122280000	560460000	0.2182	2 23 23 47	63
7	0.9712	0.9712		0.0828	0.971	0.0040			0.0082			553192500	0.218	3 2 23 23 41	60
13	0.9712	0.9712		0.0020	0.9778				0.0002			545366250	0.2175		60
13	0.9722	0.9722	0.9722	0.0001	0.9776	0.9950	0.9099	0.9762	0.0106	0.9569	110042500	545300250	0.2175		60
														2 23 23 1	00
	AREA		_												
	Pop	Area	Compare	Clusters	Perimeter	Clst Size	Lat	Lon	Slope	%Urban	IntSect	Union		Diff Sprd Brd SIRs R	
44		0.9819		0.3582	0.9824				0.0096			539876250	0.2116		63
34	0.9816	0.9816	0.9816	0.2267	0.9827	0.9924	0.9781	0.9858	0.0059	0.9734	111311250	527745000	0.2109	5 20 20 44	63
10	0.9811	0.9811	0.9811	0.5087	0.9848	0.9926	0.9795	0.9868	0.012	0.9734	110831250	524186250	0.2114	5 20 20 44	60
															63
TOP 3	CLUSTER													<u> </u>	
	Pop	Area	Compare	Cluetore	Perimeter	Clet Size	Lat	Lon	Slone	%Hrban	IntSect	Union	l oosaloo	Diff Sprd Brd SIRs R	dGr
25	0.9765	0.9765		0.8221	0.9847	0.0042	0.0724	0.0014	0.0033	0.0603	105551250	492333750	0.2144		63
26	0.9785	0.9785			0.9799			0.9829				520410000	0.2144		63
				0.7032											
18	0.9802	0.9802	0.9802	0.6663	0.979	0.9946	0.9772	0.9841	0.0076	0.9678	110261250	521553750	0.2114		60
														5 20 20 41	63
TOP 3	CLUSTER	PERIMETER	₹												
Run	Pop	Area	Compare	Clusters	Perimeter	Clst Size	Lat	Lon	Slope	%Urban	IntSect	Union	LeeSalee	Diff Sprd Brd SIRs R	dGr
29	0.9768	0.9768		0.3194	0.9876				0.0076	0.9633	118485000	550571250	0.2152		63
19	0.9761	0.9761	0.9761		0.9862				0.0076			501528750	0.2141		60
11	0.9771	0.9771		0.3233	0.9856				0.0115			505357500	0.2156		60
	0.5111	0.5771	0.0111	0.0200	0.0000	0.0002	0.0140	0.0020	0.0110	0.5711	1000+1200	000007000	0.2100		60
TOP 2	CLUSTER	CI7E												20 23 1	50
			O	01	Danier :	01-4 61			01	0/11-1	1-10-			DW 0	
Run	POD	Area	compare	Clusters	rerimeter	Cist Size	Lat	Lon	Siope	%Urban	intSect	Union	LeeSalee	Diff Sprd Brd SIRs R	aGr
14	0.9774	0.9774		0.0003	0.9697				0.0087			583518750	0.2086		60
44	0.9819	0.9819	0.9819	0.3582	0.9824	0.9971	0.9802	0.9861	0.0096	0.9777	114225000	539876250	0.2116	5 5 20 23 47	63
16	0.9739	0.9739	0.9739	0.2699	0.9569	0.9968	0.9704	0.9781	0.0018	0.9636	125940000	593557500	0.2122	2 5 23 23 44	60
														5 23 23 44	60
TOP 3	HORIZONT	AL ALIGNN	IENT												
				Clusters	Perimeter	Clst Size	l at	Lon	Slone	%Hrhan	IntSect	Union	l eeSalee	Diff Sprd Brd SIRs R	dGr
44	0.9819	0.9819	0 0810	0.3582	0.9824	0.9971	0.0802	0.0861	0.0006	0.0777	114225000	539876250	0.2116		63
10	0.9811	0.9811		0.5087	0.9848			0.9868	0.0030			524186250	0.2114		60
28	0.9811	0.9811	0.9811	0.006	0.9776	0.9927	0.9793	0.9858	0.0086	0.9706	114652500	544661250	0.2105		63
														5 20 23 ?	63
	VERTICAL														
Run	Pop	Area	Compare	Clusters	Perimeter	Clst Size	Lat	Lon	Slope	%Urban	IntSect	Union	LeeSalee	Diff Sprd Brd SIRs R	dGr
10	0.9811	0.9811	0.9811	0.5087	0.9848	0.9926	0.9795	0.9868	0.012	0.9734	110831250	524186250	0.2114	5 20 20 44	60
44	0.9819	0.9819	0.9819	0.3582	0.9824	0.9971	0.9802	0.9861	0.0096	0.9777	114225000	539876250	0.2116	5 5 20 23 47	63
28	0.9811	0.9811	0.9811	0.006	0.9776	0.9927	0.9793	0.9858	0.0086	0.9706	114652500	544661250	0.2105	5 5 20 23 41	63
															63
TOD 2	SLOPE													0 20 20 .	00
		Area	C	Chrotono	Davimatas	Clat Cina	1 -4	1	Class	0/ I lub an	IntSect	Union	LasCalas	Diff Sprd Brd SIRs R	
<u>Kuii</u>	Pop 0.0744	0.9744			Perimeter	CISI_SIZE	0.0740	LUII				540045000			
21				0.0457	0.981				0.0194			543945000	0.2124		60
15	0.9748	0.9748		0.1429	0.9817				0.0155			553856250	0.2175		60
26	0.9785	0.9785	0.9785	0.7032	0.9799	0.9949	0.976	0.9829	0.0133			520410000	0.2106	5 20 20 41	63
										0.9678	109010230				
TOP 3	% URBAN									0.9678	109616250				60
Run	/0 UNDAIN									0.9678	109016250				
		Area	Compare	Clusters	Perimeter	Clst Size	Lat	Lon	Slope			Union	LeeSalee	2 23 20 ?	60
44	Pop	Area 0.9819	Compare 0.9819	Clusters 0.3582	Perimeter 0.9824	Clst_Size	<u>Lat</u> 0.9802	Lon 0.9861	Slope 0.0096	%Urban	IntSect	<u>Union</u> 539876250		2 23 20 ? <u>Diff Sprd Brd SIRs R</u>	60
	Pop 0.9819	0.9819	0.9819	0.3582	0.9824	0.9971	0.9802	0.9861	0.0096	<u>%Urban</u> 0.9777	IntSect 114225000	539876250	0.2116	2 23 20 ? 0 <u>Diff Sprd Brd SIRs R</u> 5 20 23 47	60 63
4	Pop 0.9819 0.9808	0.9819 0.9808	0.9819 0.9808	0.3582 0.3896	0.9824 0.9795	0.9971 0.9937	0.9802 0.9777	0.9861 0.9853	0.0096 0.0026	%Urban 0.9777 0.977	IntSect 114225000 115631250	539876250 541916250	0.2116	2 23 20 ? Diff Sprd Brd SIRs R 5 20 23 47 5 20 23 41	60 63 60
	Pop 0.9819	0.9819	0.9819 0.9808	0.3582	0.9824	0.9971 0.9937	0.9802 0.9777	0.9861	0.0096	%Urban 0.9777 0.977	IntSect 114225000 115631250	539876250	0.2116	2 23 20 ? Diff Sprd Brd SIRs R 5 20 23 47 5 20 23 41 5 20 20 44	60 63 60 60
4	Pop 0.9819 0.9808	0.9819 0.9808	0.9819 0.9808	0.3582 0.3896	0.9824 0.9795	0.9971 0.9937	0.9802 0.9777	0.9861 0.9853	0.0096 0.0026	%Urban 0.9777 0.977	IntSect 114225000 115631250	539876250 541916250	0.2116	2 23 20 ? Diff Sprd Brd SIRs R 5 20 23 47 5 20 23 41 5 20 20 44	60 63 60
4 10	Pop 0.9819 0.9808 0.9811	0.9819 0.9808 0.9811	0.9819 0.9808	0.3582 0.3896	0.9824 0.9795	0.9971 0.9937	0.9802 0.9777	0.9861 0.9853 0.9868	0.0096 0.0026 0.012	%Urban 0.9777 0.977	IntSect 114225000 115631250	539876250 541916250	0.2116	2 23 20 ? Diff Sprd Brd SIRs R 5 20 23 47 5 20 23 41 5 20 20 44	60 63 60 60
4 10 Run F i	Pop 0.9819 0.9808 0.9811	0.9819 0.9808 0.9811	0.9819 0.9808 0.9811	0.3582 0.3896 0.5087	0.9824 0.9795 0.9848	0.9971 0.9937 0.9926	0.9802 0.9777 0.9795	0.9861 0.9853 0.9868	0.0096 0.0026 0.012 Solution	%Urban 0.9777 0.977 0.9734	IntSect 114225000 115631250 110831250	539876250 541916250 524186250	0.2116 0.2134 0.2114	2 23 20 ? Diff Sprd Brd SIRs R 5 20 23 47 5 20 23 41 5 20 20 44	60 63 60 60
4 10	Pop 0.9819 0.9808 0.9811	0.9819 0.9808 0.9811	0.9819 0.9808	0.3582 0.3896	0.9824 0.9795 0.9848 <u>Brd</u>	0.9971 0.9937 0.9926 SIRs	0.9802 0.9777	0.9861 0.9853 0.9868	0.0096 0.0026 0.012	%Urban 0.9777 0.977	IntSect 114225000 115631250	539876250 541916250	0.2116	2 23 20 ? Diff Sprd Brd SIRs R 5 20 23 47 5 20 23 41 5 20 20 44	60 63 60 60
4 10 Run Fi <u>Run</u> 44	Pop 0.9819 0.9808 0.9811	0.9819 0.9808 0.9811	0.9819 0.9808 0.9811 <u>Diff</u> 5	0.3582 0.3896 0.5087 Sprd 20	0.9824 0.9795 0.9848 Brd 23	0.9971 0.9937 0.9926 SIRs 47	0.9802 0.9777 0.9795 <u>RdGr</u> 63	0.9861 0.9853 0.9868	0.0096 0.0026 0.012 Solution Diff 2	%Urban 0.9777 0.977 0.9734 Sprd 23	IntSect 114225000 115631250 110831250 Brd 23	539876250 541916250 524186250 SIRs 47	0.2116 0.2134 0.2114	2 23 20 ? Diff Sprd Brd SIRs R 5 20 23 47 5 20 23 41 5 20 20 44	60 63 60 60
4 10 Run Fi <u>Run</u>	90p 0.9819 0.9808 0.9811 requency in Freq.	0.9819 0.9808 0.9811	0.9819 0.9808 0.9811 <u>Diff</u>	0.3582 0.3896 0.5087 Sprd	0.9824 0.9795 0.9848 <u>Brd</u>	0.9971 0.9937 0.9926 SIRs 47 44	0.9802 0.9777 0.9795	0.9861 0.9853 0.9868	0.0096 0.0026 0.012 Solution <u>Diff</u>	%Urban 0.9777 0.977 0.9734 Sprd	IntSect 114225000 115631250 110831250 Brd	539876250 541916250 524186250 SIRs	0.2116 0.2134 0.2114 RdGr	2 23 20 ? Diff Sprd Brd SIRs R 5 20 23 47 5 20 23 41 5 20 20 44	60 63 60 60
4 10 Run Fi <u>Run</u> 44	0.9819 0.9808 0.9811 requency in <u>Freq.</u> 5	0.9819 0.9808 0.9811	0.9819 0.9808 0.9811 <u>Diff</u> 5	0.3582 0.3896 0.5087 Sprd 20	0.9824 0.9795 0.9848 Brd 23	0.9971 0.9937 0.9926 SIRs 47	0.9802 0.9777 0.9795 <u>RdGr</u> 63	0.9861 0.9853 0.9868	0.0096 0.0026 0.012 Solution Diff 2	%Urban 0.9777 0.977 0.9734 Sprd 23	IntSect 114225000 115631250 110831250 Brd 23	539876250 541916250 524186250 SIRs 47	0.2116 0.2134 0.2114 <u>RdGr</u> 63	2 23 20 7	60 63 60 60
4 10 Run Fi Run 44 10	Pop 0.9819 0.9808 0.9811 requency in <u>Freq.</u> 5 4	0.9819 0.9808 0.9811	0.9819 0.9808 0.9811 <u>Diff</u> 5	0.3582 0.3896 0.5087 Sprd 20 20 20	0.9824 0.9795 0.9848 <u>Brd</u> 23 20	0.9971 0.9937 0.9926 SIRs 47 44	0.9802 0.9777 0.9795 <u>RdGr</u> 63 60	0.9861 0.9853 0.9868	0.0096 0.0026 0.012 Solution <u>Diff</u> 2 5	%Urban 0.9777 0.977 0.9734 Sprd 23 20	IntSect 114225000 115631250 110831250 Brd 23 23	539876250 541916250 524186250 SIRs 47 41	0.2116 0.2134 0.2114 RdGr 63 63	2 23 20 ? Diff Sprd Brd SIRs R 5 20 23 47 5 20 23 41 5 20 20 44	60 63 60 60
Run Fr Run 44 10 26 28	0.9819 0.9808 0.9811 requency in Freq. 5 4 2 2	0.9819 0.9808 0.9811	0.9819 0.9808 0.9811 Diff 5 5	0.3582 0.3896 0.5087 Sprd 20 20	0.9824 0.9795 0.9848 <u>Brd</u> 23 20 20	0.9971 0.9937 0.9926 SIRs 47 44 41	0.9802 0.9777 0.9795 RdGr 63 60 63	0.9861 0.9853 0.9868	0.0096 0.0026 0.012 Solution <u>Diff</u> 2 5 4	%Urban 0.9777 0.977 0.9734 \$\frac{\text{Sprd}}{23}\$ 20 19	IntSect 114225000 115631250 110831250 Brd 23 23 22 22	539876250 541916250 524186250 SIRS 47 41 40	0.2116 0.2134 0.2114 0.2114 <u>RdGr</u> 63 63 62	2 23 20 ?	60 63 60 60
Run Fi Run Fi Run 44 10 26 28 4	Pop 0.9819 0.9808 0.9811 requency in <u>Freq.</u> 5 4 2 2 1	0.9819 0.9808 0.9811	0.9819 0.9808 0.9811 Diff 5 5	0.3582 0.3896 0.5087 Sprd 20 20 20	0.9824 0.9795 0.9848 <u>Brd</u> 23 20 20	0.9971 0.9937 0.9926 SIRs 47 44 41	0.9802 0.9777 0.9795 RdGr 63 60 63	0.9861 0.9853 0.9868	0.0096 0.0026 0.012 Solution <u>Diff</u> 2 5	%Urban 0.9777 0.977 0.9734 Sprd 23 20	IntSect 114225000 115631250 110831250 Brd 23 23	539876250 541916250 524186250 SIRs 47 41	0.2116 0.2134 0.2114 RdGr 63 63	2 23 20 7	60 63 60 60
Run Fi Run Fi Run 44 10 26 28 4 7	Pop 0.9819 0.9808 0.9811 requency in Freq. 5 4 2 2 2 1	0.9819 0.9808 0.9811	0.9819 0.9808 0.9811 Diff 5 5	0.3582 0.3896 0.5087 Sprd 20 20 20	0.9824 0.9795 0.9848 <u>Brd</u> 23 20 20	0.9971 0.9937 0.9926 SIRs 47 44 41	0.9802 0.9777 0.9795 RdGr 63 60 63	0.9861 0.9853 0.9868	0.0096 0.0026 0.012 Solution <u>Diff</u> 2 5 4	%Urban 0.9777 0.977 0.9734 \$Prd 23 20 19	IntSect 114225000 115631250 110831250 Erd 23 23 22 24	539876250 541916250 524186250 SIRS 47 41 40 42	0.2116 0.2134 0.2114 RdGr 63 63 62 64	2 23 20 ?	60 63 60 60
Run Fi Run 44 10 26 28 4 7	Pop 0.9819 0.9808 0.9811 requency in <u>Freq.</u> 5 4 2 2 2 1 1	0.9819 0.9808 0.9811	0.9819 0.9808 0.9811 Diff 5 5	0.3582 0.3896 0.5087 Sprd 20 20 20	0.9824 0.9795 0.9848 <u>Brd</u> 23 20 20	0.9971 0.9937 0.9926 SIRs 47 44 41	0.9802 0.9777 0.9795 RdGr 63 60 63	0.9861 0.9853 0.9868	0.0096 0.0026 0.012 Solution <u>Diff</u> 2 5 4	%Urban 0.9777 0.977 0.9734 \$\frac{\text{Sprd}}{23}\$ 20 19	IntSect 114225000 115631250 110831250 Brd 23 23 22 22	539876250 541916250 524186250 SIRS 47 41 40	0.2116 0.2134 0.2114 0.2114 <u>RdGr</u> 63 63 62	2 23 20 ?	60 63 60 60
Run Fi Run 44 10 26 28 4 7 11	Pop 0.9819 0.9808 0.9811 requency in <u>Freq.</u> 5 4 2 2 1 1 1	0.9819 0.9808 0.9811	0.9819 0.9808 0.9811 Diff 5 5	0.3582 0.3896 0.5087 Sprd 20 20 20	0.9824 0.9795 0.9848 <u>Brd</u> 23 20 20	0.9971 0.9937 0.9926 SIRs 47 44 41	0.9802 0.9777 0.9795 RdGr 63 60 63	0.9861 0.9853 0.9868	0.0096 0.0026 0.012 Solution Diff 2 5 4 6	%Urban 0.9777 0.977 0.9734 Sprd 23 20 19 21	IntSect 114225000 115631250 110831250 Brd 23 23 22 24 2	539876250 541916250 524186250 SIRS 47 41 40 42 2	0.2116 0.2134 0.2114 RdGr 63 63 62 64	2 23 20 7	60 63 60 60
Run Fi Run 44 10 26 28 4 7 11 13 14	Pop 0.9819 0.9808 0.9811 requency in Freq. 5 4 2 2 1 1 1 1	0.9819 0.9808 0.9811	0.9819 0.9808 0.9811 Diff 5 5	0.3582 0.3896 0.5087 Sprd 20 20 20	0.9824 0.9795 0.9848 <u>Brd</u> 23 20 20	0.9971 0.9937 0.9926 SIRs 47 44 41	0.9802 0.9777 0.9795 RdGr 63 60 63	0.9861 0.9853 0.9868	0.0096 0.0026 0.012 Solution <u>Diff</u> 2 5 4	%Urban 0.9777 0.977 0.9734 \$Prd 23 20 19	IntSect 114225000 115631250 110831250 Erd 23 23 22 24	539876250 541916250 524186250 SIRS 47 41 40 42	0.2116 0.2134 0.2114 RdGr 63 63 62 64	2 23 20 ?	60 63 60 60
Run Fi Run 44 10 26 28 4 7 11	Pop 0.9819 0.9808 0.9811 requency in <u>Freq.</u> 5 4 2 2 1 1 1	0.9819 0.9808 0.9811	0.9819 0.9808 0.9811 Diff 5 5	0.3582 0.3896 0.5087 Sprd 20 20 20	0.9824 0.9795 0.9848 <u>Brd</u> 23 20 20	0.9971 0.9937 0.9926 SIRs 47 44 41	0.9802 0.9777 0.9795 RdGr 63 60 63	0.9861 0.9853 0.9868	0.0096 0.0026 0.012 Solution Diff 2 5 4 6	%Urban 0.9777 0.977 0.9734 Sprd 23 20 19 21	IntSect 114225000 115631250 110831250 Brd 23 23 22 24 2	539876250 541916250 524186250 SIRS 47 41 40 42 2	0.2116 0.2134 0.2114 RdGr 63 63 62 64	2 23 20 7	60 63 60 60
Run Fi Run 44 10 26 28 4 7 11 13 14	Pop 0.9819 0.9808 0.9811 requency in Freq. 5 4 2 2 1 1 1 1	0.9819 0.9808 0.9811	0.9819 0.9808 0.9811 Diff 5 5	0.3582 0.3896 0.5087 Sprd 20 20 20	0.9824 0.9795 0.9848 <u>Brd</u> 23 20 20	0.9971 0.9937 0.9926 SIRs 47 44 41	0.9802 0.9777 0.9795 RdGr 63 60 63	0.9861 0.9853 0.9868	0.0096 0.0026 0.012 Solution Diff 2 5 4 6	%Urban 0.9777 0.977 0.9734 Sprd 23 20 19 21	IntSect 114225000 115631250 110831250 Brd 23 23 22 24 2	539876250 541916250 524186250 SIRS 47 41 40 42 2	0.2116 0.2134 0.2114 RdGr 63 63 62 64	2 23 20 7	60 63 60 60
Run Fi Run Fi Run 26 28 4 7 111 13 14	Pop 0.9808 0.9808 0.9811 requency in Freq. 5 4 2 2 2 1 1 1 1 1	0.9819 0.9808 0.9811	0.9819 0.9808 0.9811 Diff 5 5	0.3582 0.3896 0.5087 Sprd 20 20 20	0.9824 0.9795 0.9848 <u>Brd</u> 23 20 20	0.9971 0.9937 0.9926 SIRs 47 44 41	0.9802 0.9777 0.9795 RdGr 63 60 63	0.9861 0.9853 0.9868	0.0096 0.0026 0.012 Solution Diff 2 5 4 6	%Urban 0.9777 0.977 0.9734 Sprd 23 20 19 21	IntSect 114225000 115631250 110831250 Brd 23 23 22 24 2	539876250 541916250 524186250 SIRS 47 41 40 42 2	0.2116 0.2134 0.2114 RdGr 63 63 62 64	2 23 20 7	60 63 60 60
Run Fi Run 44 10 26 28 4 7 11 13 14 15 16	Pop 0.9819 0.9808 0.9811 requency in Freq. 5 4 2 2 1 1 1 1 1 1	0.9819 0.9808 0.9811	0.9819 0.9808 0.9811 Diff 5 5	0.3582 0.3896 0.5087 Sprd 20 20 20	0.9824 0.9795 0.9848 <u>Brd</u> 23 20 20	0.9971 0.9937 0.9926 SIRs 47 44 41	0.9802 0.9777 0.9795 RdGr 63 60 63	0.9861 0.9853 0.9868	0.0096 0.0026 0.012 Solution Diff 2 5 4 6	%Urban 0.9777 0.977 0.9734 Sprd 23 20 19 21	IntSect 114225000 115631250 110831250 Brd 23 23 22 24 2	539876250 541916250 524186250 SIRS 47 41 40 42 2	0.2116 0.2134 0.2114 RdGr 63 63 62 64	2 23 20 7	60 63 60 60
Run Fi Run 44 10 26 28 4 7 11 13 14 15 16 18	Pop 0.9819 0.9808 0.9811 requency in Freq. 5 4 2 2 1 1 1 1 1 1 1 1	0.9819 0.9808 0.9811	0.9819 0.9808 0.9811 Diff 5 5	0.3582 0.3896 0.5087 Sprd 20 20 20	0.9824 0.9795 0.9848 <u>Brd</u> 23 20 20	0.9971 0.9937 0.9926 SIRs 47 44 41	0.9802 0.9777 0.9795 RdGr 63 60 63	0.9861 0.9853 0.9868	0.0096 0.0026 0.012 Solution Diff 2 5 4 6	%Urban 0.9777 0.977 0.9734 Sprd 23 20 19 21	IntSect 114225000 115631250 110831250 Brd 23 23 22 24 2	539876250 541916250 524186250 SIRS 47 41 40 42 2	0.2116 0.2134 0.2114 RdGr 63 63 62 64	2 23 20 7	60 63 60 60
Run Fr Run 44 10 26 28 4 7 11 13 14 15 16 18 19 21	Pop 0.9819 0.9808 0.9811 requency in Freq. 5 4 2 2 1 1 1 1 1 1 1 1 1	0.9819 0.9808 0.9811	0.9819 0.9808 0.9811 Diff 5 5	0.3582 0.3896 0.5087 Sprd 20 20 20	0.9824 0.9795 0.9848 <u>Brd</u> 23 20 20	0.9971 0.9937 0.9926 SIRs 47 44 41	0.9802 0.9777 0.9795 RdGr 63 60 63	0.9861 0.9853 0.9868	0.0096 0.0026 0.012 Solution Diff 2 5 4 6	%Urban 0.9777 0.977 0.9734 Sprd 23 20 19 21	IntSect 114225000 115631250 110831250 Brd 23 23 22 24 2	539876250 541916250 524186250 SIRS 47 41 40 42 2	0.2116 0.2134 0.2114 RdGr 63 63 62 64	2 23 20 7	60 63 60 60
Run Fi Run 444 10 26 28 4 7 11 13 14 15 16 6 18 19 21 25	Pop 0.9819 0.9808 0.9811 requency in Freq. 5 4 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.9819 0.9808 0.9811	0.9819 0.9808 0.9811 Diff 5 5	0.3582 0.3896 0.5087 Sprd 20 20 20	0.9824 0.9795 0.9848 <u>Brd</u> 23 20 20	0.9971 0.9937 0.9926 SIRs 47 44 41	0.9802 0.9777 0.9795 RdGr 63 60 63	0.9861 0.9853 0.9868	0.0096 0.0026 0.012 Solution Diff 2 5 4 6	%Urban 0.9777 0.977 0.9734 Sprd 23 20 19 21	IntSect 114225000 115631250 110831250 Brd 23 23 22 24 2	539876250 541916250 524186250 SIRS 47 41 40 42 2	0.2116 0.2134 0.2114 RdGr 63 63 62 64	2 23 20 7	60 63 60 60
Run Fr Run 44 10 26 28 4 7 11 13 13 14 15 16 18 19 21 25 29	Pop 0.9819 0.9808 0.9811 requency in Freq. 5 4 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	0.9819 0.9808 0.9811	0.9819 0.9808 0.9811 Diff 5 5	0.3582 0.3896 0.5087 Sprd 20 20 20	0.9824 0.9795 0.9848 <u>Brd</u> 23 20 20	0.9971 0.9937 0.9926 SIRs 47 44 41	0.9802 0.9777 0.9795 RdGr 63 60 63	0.9861 0.9853 0.9868	0.0096 0.0026 0.012 Solution Diff 2 5 4 6	%Urban 0.9777 0.977 0.9734 Sprd 23 20 19 21	IntSect 114225000 115631250 110831250 Brd 23 23 22 24 2	539876250 541916250 524186250 SIRS 47 41 40 42 2	0.2116 0.2134 0.2114 RdGr 63 63 62 64	2 23 20 7	60 63 60 60
Run Fi Run 444 10 26 28 4 7 11 13 14 15 16 6 18 19 21 25	Pop 0.9819 0.9808 0.9811 requency in Freq. 5 4 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.9819 0.9808 0.9811	0.9819 0.9808 0.9811 Diff 5 5	0.3582 0.3896 0.5087 Sprd 20 20 20	0.9824 0.9795 0.9848 <u>Brd</u> 23 20 20	0.9971 0.9937 0.9926 SIRs 47 44 41	0.9802 0.9777 0.9795 RdGr 63 60 63	0.9861 0.9853 0.9868	0.0096 0.0026 0.012 Solution Diff 2 5 4 6	%Urban 0.9777 0.977 0.9734 Sprd 23 20 19 21	IntSect 114225000 115631250 110831250 Brd 23 23 22 24 2	539876250 541916250 524186250 SIRS 47 41 40 42 2	0.2116 0.2134 0.2114 RdGr 63 63 62 64	2 23 20 7	60 63 60 60

TOP 3	LEESALEE	:												
	Pop		Compare	Cluetore	Perimeter	Clet Size	Lat	Lon	Slope	%Urban	IntSect	Union	I agealag	Diff Sprd Brd SIRs RdGr
7	0.9772	0.9772	0.9772		0.9712		0.9743		0.0061		119877188		0.2164	
27	0.9795	0.9795	0.9795		0.9793		0.9778		0.0058		111192188		0.2144	
21	0.9793	0.9772	0.9772		0.9788		0.9735		0.0054		115723125		0.2144	
21	0.9772	0.9772	0.9772	0.2100	0.9700	0.9947	0.9735	0.9617	0.0054	0.9657	115/23125	540441562	0.2141	
														4 21 24 40 64
TOP 3			_											D''' 0 1 D 1 0 D D 10
Run		Area			Perimeter		Lat	Lon	Slope	%Urban		Union		Diff Sprd Brd SIRs RdGr
2	0.9838	0.9838	0.9838		0.9833		0.9809	0.9876	0.0009		109082812		0.2098	
18	0.9835	0.9835	0.9835		0.9827			0.9862	0.0068		110697188		0.2106	
10	0.9835	0.9835	0.9835	0.6087	0.9832	0.9939	0.9799	0.9864	0.0057	0.9727	111341250	529475625	0.2103	
														6 19 22 40 62
TOP 3	CLUSTER													
Run	Pop	Area	Compare	Clusters	Perimeter	Clst Size	Lat	Lon	Slope	%Urban	IntSect	Union	LeeSalee	Diff Sprd Brd SIRs RdGr
3	0.9797	0.9797	0.9797	0.8703	0.9837	0.9942	0.976	0.9832	0.0127	0.9703	109358438	512370000	0.2134	4 19 24 40 62
18	0.9835	0.9835	0.9835	0.6624	0.9827	0.9963	0.9795	0.9862	0.0068	0.9727	110697188	525588750	0.2106	6 19 22 40 64
17	0.9814	0.9814	0.9814	0.6501	0.9805	0.9933	0.9779	0.9855	0.0081	0.975	107460000	507597188	0.2117	4 19 22 40 64
														4 19 22 40 64
TOP 3	CLUSTER	PERIMETER	₹											
Run	Pop	Area	Compare	Clusters	Perimeter	Clst Size	Lat	Lon	Slope	%Urban	IntSect	Union	LeeSalee	Diff Sprd Brd SIRs RdGr
3	0.9797	0.9797	0.9797		0.9837	0.9942	0.976	0.9832	0.0127		109358438		0.2134	
2	0.9838	0.9838	0.9838		0.9833			0.9876	0.0009		109082812		0.2098	
10	0.9835	0.9835	0.9835		0.9832			0.9864	0.0057		111341250		0.2103	
10	0.3033	0.9055	0.9000	0.0001	0.3032	0.5555	0.5155	0.3004	0.0037	0.3121	111341230	323473023	0.2103	6 19 22 40 62
TOP 3	CLUSTER	SIZE												0 19 22 40 02
	Pop		Compare	Clustors	Perimeter	Clot Sizo	Lat	Lon	Slope	%Urban	IntCont	Union	LooPaloo	Diff Sprd Brd SIRs RdGr
29	0.9779	0.9779	0.9779		0.9777		0.9746	0.9821	0.0065		115419375		0.2114	
25	0.9809	0.9809	0.9809		0.9775		0.9740	0.986	0.0051		108570938		0.2114	
7	0.9772	0.9772	0.9772	0.2629	0.9712	0.9966	0.9743	0.9814	0.0061	0.9679	119877188	553955625	0.2164	
														4 21 22 42 64
		TAL ALIGNN												D''' 0 1 D 1 0 D D 10
	Pop	Area			Perimeter		Lat	Lon	Slope	%Urban	IntSect	Union		Diff Sprd Brd SIRs RdGr
2	0.9838	0.9838	0.9838		0.9833		0.9809	0.9876	0.0009		109082812		0.2098	
20	0.9828	0.9828	0.9828		0.9785		0.9804	0.9867	0.009		114080625		0.2112	
11	0.9804	0.9804	0.9804	0.4195	0.9818	0.994	0.9802	0.9865	0.0047	0.9757	109454062	518504062	0.2111	
														6 19 24 40 62
		ALIGNMEN												
	Pop				Perimeter		Lat	Lon	Slope	%Urban		Union		Diff Sprd Brd SIRs RdGr
									0.0009	0.0757	100082812	520050938		
2	0.9838	0.9838	0.9838		0.9833	0.9943		0.9876					0.2098	
26	0.9828	0.9828	0.9828	0.2472	0.9797	0.9949	0.98	0.9871	0.0056	0.9727	110224688	526350938	0.2094	6 19 22 42 64
				0.2472		0.9949				0.9727		526350938		6 19 22 42 64 6 19 24 40 64
26 20	0.9828 0.9828	0.9828	0.9828	0.2472	0.9797	0.9949	0.98	0.9871	0.0056	0.9727	110224688	526350938	0.2094	6 19 22 42 64
26 20 TOP 3	0.9828 0.9828 SLOPE	0.9828 0.9828	0.9828 0.9828	0.2472 0.2981	0.9797 0.9785	0.9949 0.9929	0.98 0.9804	0.9871 0.9867	0.0056 0.009	0.9727 0.9707	110224688 114080625	526350938 540078750	0.2094 0.2112	6 19 22 42 64 6 19 24 40 64 6 19 22 40 64
26 20 TOP 3	0.9828 0.9828 SLOPE Pop	0.9828 0.9828 Area	0.9828 0.9828 Compare	0.2472 0.2981 Clusters	0.9797 0.9785 Perimeter	0.9949 0.9929	0.98 0.9804	0.9871	0.0056	0.9727 0.9707 %Urban	110224688 114080625 IntSect	526350938 540078750 <u>Union</u>	0.2094 0.2112 LeeSalee	6 19 22 42 64 66 19 24 40 64 6 19 22 40 64 6
26 20 TOP 3	0.9828 0.9828 SLOPE	0.9828 0.9828	0.9828 0.9828	0.2472 0.2981 Clusters	0.9797 0.9785	0.9949 0.9929	0.98 0.9804 Lat	0.9871 0.9867	0.0056 0.009	0.9727 0.9707 %Urban	110224688 114080625	526350938 540078750 <u>Union</u>	0.2094 0.2112	6 19 22 42 64 66 19 24 40 64 6 19 22 40 64 6
26 20 TOP 3 <u>Run</u>	0.9828 0.9828 SLOPE Pop	0.9828 0.9828 Area	0.9828 0.9828 Compare	0.2472 0.2981 Clusters 0.2106	0.9797 0.9785 Perimeter	0.9949 0.9929 <u>Clst Size</u> 0.9961	0.98 0.9804 Lat	0.9871 0.9867 Lon 0.9842	0.0056 0.009 Slope	0.9727 0.9707 %Urban 0.9704	110224688 114080625 IntSect	526350938 540078750 <u>Union</u> 571530938	0.2094 0.2112 LeeSalee	6 19 22 42 64 64 64 6 19 22 40 64 64 6 19 22 40 64 64 66 6 21 24 40 62 62 62 62 62 62 62 62 62 62 62 62 62
26 20 TOP 3 <u>Run</u> 8	0.9828 0.9828 SLOPE Pop 0.9796	0.9828 0.9828 Area 0.9796	0.9828 0.9828 Compare 0.9796	0.2472 0.2981 Clusters 0.2106	0.9797 0.9785 <u>Perimeter</u> 0.9694	0.9949 0.9929 <u>Clst Size</u> 0.9961	0.98 0.9804 <u>Lat</u> 0.976	0.9871 0.9867 Lon 0.9842	0.0056 0.009 Slope 0.0228	0.9727 0.9707 %Urban 0.9704 0.9713	110224688 114080625 IntSect 121348125	526350938 540078750 <u>Union</u> 571530938 505822500	0.2094 0.2112 LeeSalee 0.2123	6 19 22 42 64 6 19 22 40 64 6 19 22 40 64 Diff Sprd Brd SiRs RdGr 6 21 24 40 62 4 19 22 40 62
26 20 TOP 3 <u>Run</u> 8	0.9828 0.9828 SLOPE Pop 0.9796 0.9797	0.9828 0.9828 Area 0.9796 0.9797	0.9828 0.9828 Compare 0.9796 0.9797	0.2472 0.2981 Clusters 0.2106 0.6338	0.9797 0.9785 Perimeter 0.9694 0.9793	0.9949 0.9929 Clst Size 0.9961 0.9945	0.98 0.9804 <u>Lat</u> 0.976 0.9771	0.9871 0.9867 Lon 0.9842 0.9851	0.0056 0.009 Slope 0.0228 0.0154	0.9727 0.9707 %Urban 0.9704 0.9713	110224688 114080625 <u>IntSect</u> 121348125 108149062	526350938 540078750 <u>Union</u> 571530938 505822500	0.2094 0.2112 LeeSalee 0.2123 0.2138	6 19 22 42 64 6 19 22 40 64 6 19 22 40 64 Diff Sprd Brd SiRs RdGr 6 21 24 40 62 4 19 22 40 62
26 20 TOP 3 Run 8 1	0.9828 0.9828 SLOPE Pop 0.9796 0.9797	0.9828 0.9828 Area 0.9796 0.9797	0.9828 0.9828 Compare 0.9796 0.9797	0.2472 0.2981 Clusters 0.2106 0.6338	0.9797 0.9785 Perimeter 0.9694 0.9793	0.9949 0.9929 Clst Size 0.9961 0.9945	0.98 0.9804 <u>Lat</u> 0.976 0.9771	0.9871 0.9867 Lon 0.9842 0.9851	0.0056 0.009 Slope 0.0228 0.0154	0.9727 0.9707 %Urban 0.9704 0.9713	110224688 114080625 <u>IntSect</u> 121348125 108149062	526350938 540078750 <u>Union</u> 571530938 505822500	0.2094 0.2112 LeeSalee 0.2123 0.2138	6 19 22 42 64 64 64 19 22 40 64 64
26 20 TOP 3 Run 8 1 3	0.9828 0.9828 SLOPE Pop 0.9796 0.9797 0.9797	0.9828 0.9828 Area 0.9796 0.9797 0.9797	0.9828 0.9828 Compare 0.9796 0.9797 0.9797	0.2472 0.2981 Clusters 0.2106 0.6338 0.8703	0.9797 0.9785 Perimeter 0.9694 0.9793 0.9837	0.9949 0.9929 <u>Clst Size</u> 0.9961 0.9945 0.9942	0.98 0.9804 <u>Lat</u> 0.976 0.9771	0.9871 0.9867 Lon 0.9842 0.9851	0.0056 0.009 Slope 0.0228 0.0154	0.9727 0.9707 %Urban 0.9704 0.9713	110224688 114080625 IntSect 121348125 108149062 109358438	526350938 540078750 <u>Union</u> 571530938 505822500	0.2094 0.2112 LeeSalee 0.2123 0.2138 0.2134	6 19 22 42 64 64 64 19 22 40 64 64
26 20 TOP 3 Run 8 1 3	0.9828 0.9828 SLOPE Pop 0.9796 0.9797 0.9797	0.9828 0.9828 Area 0.9796 0.9797 0.9797	0.9828 0.9828 Compare 0.9796 0.9797 0.9797	0.2472 0.2981 Clusters 0.2106 0.6338 0.8703	0.9797 0.9785 Perimeter 0.9694 0.9793	0.9949 0.9929 <u>Clst Size</u> 0.9961 0.9945 0.9942 <u>Clst Size</u>	0.98 0.9804 <u>Lat</u> 0.976 0.9771 0.976	0.9871 0.9867 Lon 0.9842 0.9851 0.9832	0.0056 0.009 Slope 0.0228 0.0154 0.0127	0.9727 0.9707 %Urban 0.9704 0.9713 0.9703	110224688 114080625 IntSect 121348125 108149062 109358438	526350938 540078750 <u>Union</u> 571530938 505822500 512370000 <u>Union</u>	0.2094 0.2112 LeeSalee 0.2123 0.2138 0.2134	6 19 22 42 64 6 19 24 40 64 6 19 8 28 40 64 Diff Sprd Brd SIRs RdGr 6 21 24 40 62 4 19 22 40 62 4 19 24 40 62 Diff Sprd Brd SIRs RdGr 6 21 24 662 4 19 24 40 62 Diff Sprd Brd SIRs RdGr
26 20 TOP 3 Run 8 1 3 TOP 3 Run	0.9828 0.9828 SLOPE Pop 0.9796 0.9797 0.9797	0.9828 0.9828 Area 0.9796 0.9797 0.9797	0.9828 0.9828 Compare 0.9796 0.9797 0.9797	0.2472 0.2981 Clusters 0.2106 0.6338 0.8703 Clusters 0.4528	0.9797 0.9785 Perimeter 0.9694 0.9793 0.9837	0.9949 0.9929 Clst Size 0.9961 0.9945 0.9942 Clst Size 0.9941	0.98 0.9804 <u>Lat</u> 0.976 0.9771 0.976 <u>Lat</u> 0.9786	0.9871 0.9867 Lon 0.9842 0.9851 0.9832	0.0056 0.009 Slope 0.0228 0.0154 0.0127	0.9727 0.9707 <u>%Urban</u> 0.9704 0.9713 0.9703 <u>%Urban</u> 0.9763	110224688 114080625 IntSect 121348125 108149062 109358438 IntSect	526350938 540078750 <u>Union</u> 571530938 505822500 512370000 <u>Union</u> 533908125	0.2094 0.2112 LeeSalee 0.2123 0.2138 0.2134 LeeSalee	6 19 22 42 64 6 19 24 40 64 6 19 27 40 64 Diff Sprd Brd Sirs RdGr 6 21 24 40 62 4 19 22 40 62 4 19 24 40 62 Diff Sprd Brd Sirs RdGr Diff Sprd Brd Sirs RdGr 6 19 24 42 62
26 20 TOP 3 Run 8 1 3 TOP 3 Run 12 2	0.9828 0.9828 SLOPE Pop 0.9796 0.9797 0.9797 % URBAN Pop 0.9815 0.9838	0.9828 0.9828 Area 0.9796 0.9797 0.9797 Area 0.9815 0.9838	0.9828 0.9828 Compare 0.9796 0.9797 0.9797 Compare 0.9815 0.9838	0.2472 0.2981 Clusters 0.2106 0.6338 0.8703 Clusters 0.4528 0.5087	0.9797 0.9785 Perimeter 0.9694 0.9793 0.9837 Perimeter 0.977 0.9833	0.9949 0.9929 <u>Clst Size</u> 0.9961 0.9942 <u>Clst Size</u> 0.9941 0.9943	0.98 0.9804 Lat 0.976 0.9771 0.976 Lat 0.9786 0.9809	0.9871 0.9867 Lon 0.9842 0.9851 0.9832 Lon 0.9854 0.9876	0.0056 0.009 Slope 0.0228 0.0154 0.0127 Slope 0.0046 0.0009	0.9727 0.9707 %Urban 0.9704 0.9713 0.9703 %Urban 0.9763 0.9757	110224688 114080625 IntSect 121348125 108149062 109358438 IntSect 111889688 109082812	526350938 540078750 <u>Union</u> 571530938 505822500 512370000 <u>Union</u> 533908125 520050938	0.2094 0.2112 LeeSalee 0.2123 0.2134 0.2134 LeeSalee 0.2096 0.2098	6 19 22 42 64 6 19 22 40 64 6 19 22 40 64 Diff Sprd Brd SIRs RdGr 6 21 24 40 62 4 19 22 40 62 4 19 24 40 62 4 19 24 40 62 Diff Sprd Brd SIRs RdGr 6 21 40 62 Diff Sprd Brd SIRs RdGr 6 19 24 42 62 6 19 22 40 62
26 20 TOP 3 Run 8 1 3 TOP 3 Run 12	0.9828 0.9828 SLOPE Pop 0.9796 0.9797 0.9797 % URBAN Pop 0.9815	0.9828 0.9828 Area 0.9796 0.9797 0.9797 Area 0.9815	0.9828 0.9828 Compare 0.9796 0.9797 0.9797 Compare 0.9815	0.2472 0.2981 Clusters 0.2106 0.6338 0.8703 Clusters 0.4528 0.5087	0.9797 0.9785 Perimeter 0.9694 0.9793 0.9837 Perimeter 0.977	0.9949 0.9929 <u>Clst Size</u> 0.9961 0.9942 <u>Clst Size</u> 0.9941 0.9943	0.98 0.9804 <u>Lat</u> 0.976 0.9771 0.976 <u>Lat</u> 0.9786	0.9871 0.9867 Lon 0.9842 0.9851 0.9832 Lon 0.9854 0.9876	0.0056 0.009 Slope 0.0228 0.0154 0.0127 Slope 0.0046	0.9727 0.9707 %Urban 0.9704 0.9713 0.9703 %Urban 0.9763 0.9757	110224688 114080625 IntSect 121348125 108149062 109358438 IntSect 111889688	526350938 540078750 <u>Union</u> 571530938 505822500 512370000 <u>Union</u> 533908125 520050938	0.2094 0.2112 LeeSalee 0.2123 0.2138 0.2134 LeeSalee 0.2096	6 19 22 42 64 6 19 22 40 64 6 19 22 40 64 Diff Sprd Brd SIRs RdGr 6 21 24 40 62 4 19 22 40 62 4 19 24 40 62 4 19 24 40 62 Diff Sprd Brd SIRs RdGr 6 21 40 62 Diff Sprd Brd SIRs RdGr 6 19 24 42 62 6 19 22 40 62
26 20 TOP 3 Run 8 1 3 TOP 3 Run 12 2	0.9828 0.9828 SLOPE Pop 0.9796 0.9797 0.9797 % URBAN Pop 0.9815 0.9838	0.9828 0.9828 Area 0.9796 0.9797 0.9797 Area 0.9815 0.9838	0.9828 0.9828 Compare 0.9796 0.9797 0.9797 Compare 0.9815 0.9838	0.2472 0.2981 Clusters 0.2106 0.6338 0.8703 Clusters 0.4528 0.5087	0.9797 0.9785 Perimeter 0.9694 0.9793 0.9837 Perimeter 0.977 0.9833	0.9949 0.9929 <u>Clst Size</u> 0.9961 0.9942 <u>Clst Size</u> 0.9941 0.9943	0.98 0.9804 Lat 0.976 0.9771 0.976 Lat 0.9786 0.9809	0.9871 0.9867 Lon 0.9842 0.9851 0.9832 Lon 0.9854 0.9876	0.0056 0.009 Slope 0.0228 0.0154 0.0127 Slope 0.0046 0.0009	0.9727 0.9707 %Urban 0.9704 0.9713 0.9703 %Urban 0.9763 0.9757	110224688 114080625 IntSect 121348125 108149062 109358438 IntSect 111889688 109082812	526350938 540078750 <u>Union</u> 571530938 505822500 512370000 <u>Union</u> 533908125 520050938	0.2094 0.2112 LeeSalee 0.2123 0.2134 0.2134 LeeSalee 0.2096 0.2098	6 19 22 42 64 6 19 24 40 64 6 19 22 40 64 6 19 22 40 62 19 24 40 62 4 19 24 40 62 4 19 24 40 62 19 24 40 62 19 24 42 62 19 24 42 62 2 4 19 24 42 62 3 6 19 24 42 62 4 19 24 42 62 4 19 24 42 62 4 19 24 42 62
26 20 TOP 3 Run 8 1 3 TOP 3 Run 12 2 11	0.9828 0.9828 SLOPE Pop 0.9796 0.9797 % URBAN Pop 0.9815 0.9838 0.9804	0.9828 0.9828 Area 0.9796 0.9797 0.9797 Area 0.9815 0.9838 0.9804	0.9828 0.9828 Compare 0.9796 0.9797 0.9797 Compare 0.9815 0.9838	0.2472 0.2981 Clusters 0.2106 0.6338 0.8703 Clusters 0.4528 0.5087	0.9797 0.9785 Perimeter 0.9694 0.9793 0.9837 Perimeter 0.977 0.9833	0.9949 0.9929 <u>Clst Size</u> 0.9961 0.9942 <u>Clst Size</u> 0.9941 0.9943	0.98 0.9804 Lat 0.976 0.9771 0.976 Lat 0.9786 0.9809	0.9871 0.9867 Lon 0.9842 0.9851 0.9832 Lon 0.9854 0.9876 0.9876	0.0056 0.009 Slope 0.0228 0.0154 0.0127 Slope 0.0046 0.0009	0.9727 0.9707 %Urban 0.9704 0.9713 0.9703 %Urban 0.9763 0.9757	110224688 114080625 IntSect 121348125 108149062 109358438 IntSect 111889688 109082812	526350938 540078750 <u>Union</u> 571530938 505822500 512370000 <u>Union</u> 533908125 520050938	0.2094 0.2112 LeeSalee 0.2123 0.2134 0.2134 LeeSalee 0.2096 0.2098	6 19 22 42 64 6 19 24 40 64 6 19 22 40 64 6 19 22 40 62 19 24 40 62 4 19 24 40 62 4 19 24 40 62 19 24 40 62 19 24 42 62 19 24 42 62 2 4 19 24 42 62 3 6 19 24 42 62 4 19 24 42 62 4 19 24 42 62 4 19 24 42 62
26 20 TOP 3 Run 8 1 3 TOP 3 Run 12 2 11	0.9828 0.9828 SLOPE Pop 0.9796 0.9797 0.9797 % URBAN Pop 0.9815 0.9838 0.9804	0.9828 0.9828 Area 0.9796 0.9797 0.9797 Area 0.9815 0.9838 0.9804	0.9828 0.9828 Compare 0.9796 0.9797 0.9797 Compare 0.9815 0.9838	0.2472 0.2981 Clusters 0.2106 0.6338 0.8703 Clusters 0.4528 0.5087	0.9797 0.9785 Perimeter 0.9694 0.9793 0.9837 Perimeter 0.977 0.9833	0.9949 0.9929 <u>Clst Size</u> 0.9961 0.9945 0.9942 <u>Clst Size</u> 0.9941 0.9943 0.9943	0.98 0.9804 Lat 0.976 0.9771 0.976 Lat 0.9786 0.9809	0.9871 0.9867 Lon 0.9842 0.9851 0.9832 Lon 0.9854 0.9876 0.9876	0.0056 0.009 Slope 0.0228 0.0154 0.0127 Slope 0.0046 0.0009 0.0047	0.9727 0.9707 %Urban 0.9704 0.9713 0.9703 %Urban 0.9763 0.9757	110224688 114080625 IntSect 121348125 108149062 109358438 IntSect 111889688 109082812	526350938 540078750 <u>Union</u> 571530938 505822500 512370000 <u>Union</u> 533908125 520050938	0.2094 0.2112 LeeSalee 0.2123 0.2134 0.2134 LeeSalee 0.2096 0.2098	6 19 22 42 64 6 19 24 40 64 6 19 22 40 64 6 19 22 40 62 19 24 40 62 4 19 24 40 62 4 19 24 40 62 19 24 40 62 19 24 42 62 19 24 42 62 2 4 19 24 42 62 3 6 19 24 42 62 4 19 24 42 62 4 19 24 42 62 4 19 24 42 62
26 20 TOP 3 Run 8 1 3 TOP 3 Run 12 2 11	0.9828 0.9828 SLOPE Pop 0.9796 0.9797 0.9797 0.9815 0.9815 0.9838 0.9804	0.9828 0.9828 Area 0.9796 0.9797 0.9797 Area 0.9815 0.9838 0.9804	0.9828 0.9828 Compare 0.9796 0.9797 0.9797 Compare 0.9815 0.9838 0.9804	0.2472 0.2981 Clusters 0.2106 0.6338 0.8703 Clusters 0.4528 0.5087 0.4195	0.9797 0.9785 Perimeter 0.9694 0.9793 0.9837 Perimeter 0.977 0.9833 0.9818	0.9949 0.9929 <u>Clst Size</u> 0.9961 0.9945 0.9942 <u>Clst Size</u> 0.9941 0.9943 0.994	0.98 0.9804 Lat 0.976 0.9771 0.976 Lat 0.9786 0.9809 0.9802	0.9871 0.9867 Lon 0.9842 0.9851 0.9832 Lon 0.9854 0.9876 0.9876	0.0056 0.009 Slope 0.0228 0.0154 0.0127 Slope 0.0046 0.0009 0.0047 Solution	0.9727 0.9707 %Urban 0.9704 0.9703 %Urban 0.9763 0.9757	110224688 114080625 IntSect 121348125 108149062 109358438 IntSect 111889688 109082812 109454062	526350938 540078750 <u>Union</u> 571530938 505822500 512370000 <u>Union</u> 533908125 520050938 518504062	0.2094 0.2112 LeeSalee 0.2123 0.2138 0.2134 LeeSalee 0.2096 0.2098 0.2111	6 19 22 42 64 6 19 24 40 64 6 19 22 40 64 6 19 22 40 62 19 24 40 62 4 19 24 40 62 4 19 24 40 62 19 24 40 62 19 24 42 62 19 24 42 62 2 4 19 24 42 62 3 6 19 24 42 62 4 19 24 42 62 4 19 24 42 62 4 19 24 42 62
26 20 TOP 3 Run 8 1 3 TOP 3 Run 12 2 11	0.9828 0.9828 SLOPE Pop 0.9796 0.9797 0.9797 % URBAN Pop 0.9815 0.9838 0.9804	0.9828 0.9828 Area 0.9796 0.9797 0.9797 Area 0.9815 0.9838 0.9804	0.9828 0.9828 0.9796 0.9796 0.9797 0.9797 0.9815 0.9815 0.9804	0.2472 0.2981 Clusters 0.2106 0.6338 0.8703 Clusters 0.4528 0.5087 0.4195	0.9797 0.9785 Perimeter 0.9694 0.9793 0.9837 Perimeter 0.977 0.9833 0.9818	0.9949 0.9929 <u>Clst Size</u> 0.9961 0.9945 0.9942 <u>Clst Size</u> 0.9941 0.9943 0.994	0.98 0.9804 <u>Lat</u> 0.976 0.9771 0.976 <u>Lat</u> 0.9786 0.9809 0.9802	0.9871 0.9867 Lon 0.9842 0.9851 0.9832 Lon 0.9854 0.9876 0.9876	0.0056 0.009 Slope 0.0228 0.0154 0.0127 Slope 0.0046 0.0009 0.0047 Solution	0.9727 0.9707 %Urban 0.9704 0.9703 %Urban 0.9763 0.9757	110224688 114080625 IntSect 121348125 108149062 109358438 IntSect 111889688 109082812 109454062	526350938 540078750 <u>Union</u> 571530938 505822500 512370000 <u>Union</u> 533908125 520050938 518504062	0.2094 0.2112 LeeSalee 0.2123 0.2138 0.2134 LeeSalee 0.2096 0.2098 0.2111	6 19 22 42 64 6 19 24 40 64 6 19 22 40 64 6 19 22 40 62 19 24 40 62 4 19 24 40 62 4 19 24 40 62 19 24 40 62 19 24 42 62 19 24 42 62 2 4 19 24 42 62 3 6 19 24 42 62 4 19 24 42 62 4 19 24 42 62 4 19 24 42 62
26 20 TOP 3 Run 8 1 3 TOP 3 Run 12 2 11 Run Fr Run Fr Run 2	0.9828 0.9828 SLOPE Pop 0.9796 0.9797 0.9797 % URBAN Pop 0.9815 0.9838 0.9804 equency in Freq. 5	0.9828 0.9828 Area 0.9796 0.9797 0.9797 Area 0.9815 0.9838 0.9804	0.9828 0.9828 Compare 0.9796 0.9797 0.9797 0.9815 0.9838 0.9804	0.2472 0.2981 Clusters 0.2106 0.6338 0.8703 Clusters 0.4528 0.5087 0.4195 Sprd 19	0.9797 0.9785 Perimeter 0.9694 0.9793 0.9837 Perimeter 0.977 0.9833 0.9818	0.9949 0.9929 <u>Clst Size</u> 0.9945 0.9942 <u>Clst Size</u> 0.9941 0.9943 0.994	0.98 0.9804 Lat 0.976 0.9771 0.976 Lat 0.9786 0.9809 0.9802 RdGr 62	0.9871 0.9867 Lon 0.9842 0.9851 0.9832 Lon 0.9854 0.9876 0.9876	0.0056 0.009 Slope 0.0228 0.0154 0.0127 Slope 0.0046 0.0009 0.0047 Solution Diff	0.9727 0.9707 %Urban 0.9704 0.9703 %Urban 0.9763 0.9757	110224688 114080625 IntSect 121348125 108149062 109358438 IntSect 111889688 109082812 109454062	526350938 540078750 Union 571530938 505822500 512370000 Union 533908125 520050938 518504062	0.2094 0.2112 LeeSalee 0.2123 0.2138 0.2134 LeeSalee 0.2096 0.2098 0.2098 0.2111	6
26 20 TOP 3 Run 8 1 3 TOP 3 Run 12 2 11 Run Fr Run 2 3 7	0.9828 0.9828 SLOPE Pop 0.9796 0.9797 0.9797 % URBAN Pop 0.9815 0.9838 0.9804 equency ir Freq. 5 3 2	0.9828 0.9828 Area 0.9796 0.9797 0.9797 Area 0.9815 0.9838 0.9804	0.9828 0.9628 Compare 0.9796 0.9797 0.9797 Compare 0.9815 0.9838 0.9804	0.2472 0.2981 Clusters 0.2106 0.6338 0.8703 Clusters 0.4528 0.5087 0.4195 Sprd 19	0.9797 0.9785 Perimeter 0.9694 0.9793 0.9837 Perimeter 0.977 0.9833 0.9818 Brd 22 24 24	0.9949 0.9929 <u>Clst Size</u> 0.9945 0.9942 <u>Clst Size</u> 0.9943 0.9943 0.994 <u>SIRs</u> 40 40	0.98 0.9804 Lat 0.976 0.9771 0.976 Lat 0.9786 0.9809 0.9802 RdGr 62 62 62 62	0.9871 0.9867 Lon 0.9842 0.9851 0.9832 Lon 0.9854 0.9876 0.9876	0.0056 0.009 Slope 0.0228 0.0154 0.0127 Slope 0.0046 0.0009 0.0047 Solution	0.9727 0.9707 %Urban 0.9704 0.9703 0.9703 %Urban 0.9763 0.9757 0.9757	110224688 114080625 IntSect 121348125 108149062 109358438 IntSect 111889688 109082812 109454062	526350938 540078750 <u>Union</u> 571530938 505822500 512370000 <u>Union</u> 533908125 520050938 518504062	0.2094 0.2112 LeeSalee 0.2123 0.2138 0.2134 LeeSalee 0.2096 0.2098 0.2111	6 19 22 42 64 6 19 24 40 64 6 19 22 40 64 6 19 22 40 62 19 24 40 62 4 19 24 40 62 4 19 24 40 62 19 24 40 62 19 24 42 62 19 24 42 62 2 4 19 24 42 62 3 6 19 24 42 62 4 19 24 42 62 4 19 24 42 62 4 19 24 42 62
26 20 TOP 3 Run 8 1 3 TOP 3 Run 12 2 11 Run Fr Run 2 3	0.9828 0.9828 SLOPE Pop 0.9796 0.9797 0.9797 % URBAN Pop 0.9815 0.9838 0.9804 equency in Freq. 5	0.9828 0.9828 Area 0.9796 0.9797 0.9797 Area 0.9815 0.9838 0.9804	0.9828 0.9828 Compare 0.9796 0.9797 0.9797 Compare 0.9815 0.9838 0.9804 Diff 6 4 4	0.2472 0.2981 Clusters 0.2106 0.6338 0.8703 Clusters 0.4528 0.5087 0.4195 Sprd 19 19 19 21	0.9797 0.9785 Perimeter 0.9694 0.9793 0.9837 Perimeter 0.977 0.9833 0.9818 Brd 22 24	0.9949 0.9929 Clst Size 0.9945 0.9942 Clst Size 0.9941 0.9943 0.994 SIRS 40 40	0.98 0.9804 Lat 0.976 0.9771 0.976 Lat 0.9786 0.9809 0.9802 RdGr 62 62	0.9871 0.9867 Lon 0.9842 0.9851 0.9832 Lon 0.9854 0.9876 0.9876	0.0056 0.009 Slope 0.0228 0.0154 0.0127 Slope 0.0046 0.0009 0.0047 Solution Diff	0.9727 0.9707 %Urban 0.9704 0.9703 0.9703 %Urban 0.9763 0.9757 0.9757	110224688 114080625 IntSect 121348125 108149062 109358438 IntSect 111889688 109082812 109454062	526350938 540078750 Union 571530938 505822500 512370000 Union 533908125 520050938 518504062	0.2094 0.2112 LeeSalee 0.2123 0.2138 0.2134 LeeSalee 0.2096 0.2098 0.2098 0.2111	6 19 22 42 64 64 66 19 22 40 64 66 19 22 40 64 66 19 22 40 62 4 19 22 40 62 4 19 24 40 62 62 6 19 22 40 62 4 19 24 42 62 66 19 24 42 62 65 19 24 42 62 65 19 24 42 62 65 19 24 42 62 65 19 24 42 62 65 19 24 42 62 65 19 24 42 62 65 19 24 42 62 65 19 24 42 62 65 19 24 42 62 65 19 24 42 62 65 19 24 42 62 65 19 24 42 62 65 19 24 42 62
26 20 TOP 3 Run 8 1 3 TOP 3 Run 12 2 11 Run Fr Run 2 3 7 10 10 11	0.9828 0.9828 SLOPE Pop 0.9796 0.9797 0.9797 **URBAN Pop 0.9818 0.9804 equency in Fred. 5 3 2 2	0.9828 0.9828 Area 0.9796 0.9797 0.9797 Area 0.9815 0.9838 0.9804	0.9828 0.9628 Compare 0.9796 0.9797 0.9797 0.9815 0.9838 0.9804 Diff 6 4 4 4 6 6	0.2472 0.2981 Clusters 0.2106 0.6338 0.8703 Clusters 0.4528 0.5087 0.4195 Sprd 19 19 21 19	0.9797 0.9785 Perimeter 0.9694 0.9793 0.9837 Perimeter 0.977 0.9833 0.9818 Brd 22 24 24 24	0.9949 0.9929 Clst Size 0.9945 0.9942 Clst Size 0.9943 0.9943 0.9944 40 40 40 42	0.98 0.9804 Lat 0.976 0.9771 0.976 Lat 0.9786 0.9809 0.9802 RdGr 62 62 62 62 62 62 62	0.9871 0.9867 Lon 0.9842 0.9851 0.9832 Lon 0.9854 0.9876 0.9876	0.0056 0.009 Slope 0.0228 0.0154 0.0127 Slope 0.0046 0.0009 0.0047 Solution Diff	0.9727 0.9707 %Urban 0.9704 0.9713 0.9703 %Urban 0.9757 0.9757	110224688 114080625 IntSect 121348125 108149062 109358438 IntSect 111889688 109082812 109454062 Brd	528350938 540078750 Union 571530938 505822500 512370000 Union 533908125 520050938 518504062	0.2094 0.2112 LeeSalee 0.2123 0.2134 0.2134 LeeSalee 0.2098 0.2111 RdGr	6
26 20 TOP 3 Run 8 1 3 TOP 3 Run 12 2 11 Run Fi Run 2 3 7 10 11 18	0.9828 0.9828 SLOPE Pop 0.9797 0.9797 % URBAN Pop 0.9815 0.9838 0.9804 equency ir Freq. 5 3 2 2 2 2	0.9828 0.9828 Area 0.9796 0.9797 0.9797 Area 0.9815 0.9838 0.9804	0.9828 0.9828 Compare 0.9796 0.9797 0.9797 Compare 0.9815 0.9838 0.9804 Diff 6 4 4 4 6	0.2472 0.2981 Clusters 0.2106 0.6338 0.8703 Clusters 0.4528 0.5087 0.4195 Sprd 19 19 21 19 19	0.9797 0.9785 Perimeter 0.9694 0.9793 0.9837 Perimeter 0.977 0.9833 0.9818 Brd 22 24 24 22 24 22 24	0.9949 0.9929 Clst Size 0.9945 0.9942 Clst Size 0.9943 0.9943 0.994 SIRs 40 40 40 42 42 42 42	0.98 0.9804 Lat 0.976 0.9771 0.976 Lat 0.9786 0.9809 0.9802 RdGr 62 62 62 62 62 62 62 62 62 62	0.9871 0.9867 Lon 0.9842 0.9851 0.9832 Lon 0.9854 0.9876 0.9865	0.0056 0.009 Slope 0.0228 0.0154 0.0127 Slope 0.0046 0.0009 0.0047 Solution Diff 1	0.9727 0.9707 %Urban 0.9704 0.9713 0.9703 %Urban 0.9763 0.9757 0.9757 Sprd	110224688 114080625 IntSect 121348125 108149062 109358438 IntSect 111889688 109062812 109454062 Brd 19	526350938 540078750 <u>Union</u> 571530938 505822500 512370000 <u>Union</u> 533908125 520050938 518504062 <u>SIRs</u> 38 41	0.2094 0.2112 LeeSalee 0.2123 0.2138 0.2134 LeeSalee 0.2096 0.2098 0.2111 RdGr 59 61	6 19 22 42 64 6 19 24 40 64 6 19 22 40 64 Diff Sprd Brd SIRs RdGr 6 21 24 40 62 4 19 22 40 62 4 19 24 40 62 4 19 24 40 62 Diff Sprd Brd SIRs RdGr 6 21 24 40 62 4 19 24 40 62 6 19 22 40 62 6 19 22 40 62 6 19 22 40 62 7 19 24 42 62 6 19 24 42 62 8 19 24 42 62 8 19 24 42 62
26 20 TOP 3 Run 8 1 3 TOP 3 Run 12 2 11 Run Fr Run 2 3 7 10 10 11	0.9828 0.9828 SLOPE Pop 0.9797 0.9797 % URBAN Pop 0.9815 0.9838 0.9804 equency in Freg. 5 3 2 2	0.9828 0.9828 Area 0.9796 0.9797 0.9797 Area 0.9815 0.9838 0.9804	0.9828 0.9828 Compare 0.9796 0.9797 0.9797 0.9815 0.9838 0.9804 Diff 6 4 4 6 6 4 4 6 6	0.2472 0.2981 Clusters 0.2106 0.6338 0.8703 Clusters 0.4528 0.5087 0.4195 Sprd 19 19 21 19 19	0.9797 0.9785 Perimeter 0.9694 0.9793 0.9837 Perimeter 0.977 0.9833 0.9818 Brd 22 24 24 24 22 24	0.9949 0.9929 Clst Size 0.9945 0.9942 Clst Size 0.9941 0.9943 0.994 SIRs 40 40 40 42 42	0.98 0.9804 Lat 0.976 0.9771 0.976 Lat 0.9786 0.9809 0.9802 RdGr 62 62 62 62 62 62 62 62	0.9871 0.9867 Lon 0.9842 0.9851 0.9832 Lon 0.9854 0.9876 0.9865	0.0056 0.009 Slope 0.0228 0.0154 0.0127 Slope 0.0046 0.0009 0.0047 Solution Diff	0.9727 0.9707 %Urban 0.9704 0.9713 0.9703 %Urban 0.9757 0.9757	110224688 114080625 IntSect 121348125 108149062 109358438 IntSect 111889688 109082812 109454062 Brd	528350938 540078750 Union 571530938 505822500 512370000 Union 533908125 520050938 518504062	0.2094 0.2112 LeeSalee 0.2123 0.2134 0.2134 LeeSalee 0.2098 0.2111 RdGr	6 19 22 42 64 64 66 19 22 40 64 66 19 22 40 64 66 19 22 40 62 4 19 22 40 62 4 19 24 40 62 62 6 19 22 40 62 4 19 24 42 62 66 19 24 42 62 65 19 24 42 62 65 19 24 42 62 65 19 24 42 62 65 19 24 42 62 65 19 24 42 62 65 19 24 42 62 65 19 24 42 62 65 19 24 42 62 65 19 24 42 62 65 19 24 42 62 65 19 24 42 62 65 19 24 42 62 65 19 24 42 62
26 20 TOP 3 Run 8 1 3 TOP 3 Run 12 2 11 11 Run Fr Run 12 2 11 11 12 2 11 11 12 2 11 11 12 12	0.9828 0.9828 SLOPE Pop 0.9797 0.9797 % URBAN Pop 0.9815 0.9838 0.9804 equency ir Frea. 5 3 2 2 2 2 2 2	0.9828 0.9828 Area 0.9796 0.9797 0.9797 Area 0.9815 0.9838 0.9804	0.9828 0.9828 Compare 0.9796 0.9797 0.9797 0.9815 0.9838 0.9804 Diff 6 4 4 6 6 4 4 6 6	0.2472 0.2981 Clusters 0.2106 0.6338 0.8703 Clusters 0.4528 0.5087 0.4195 Sprd 19 19 21 19 19	0.9797 0.9785 Perimeter 0.9694 0.9793 0.9837 Perimeter 0.977 0.9833 0.9818 Brd 22 24 24 22 24 22 24	0.9949 0.9929 Clst Size 0.9945 0.9942 Clst Size 0.9943 0.9943 0.994 SIRs 40 40 40 42 42 42 42	0.98 0.9804 Lat 0.976 0.9771 0.976 Lat 0.9786 0.9809 0.9802 RdGr 62 62 62 62 62 62 62 62 62 62	0.9871 0.9867 Lon 0.9842 0.9851 0.9832 Lon 0.9854 0.9876 0.9865	0.0056 0.009 Slope 0.0228 0.0154 0.0127 Slope 0.0046 0.0009 0.0047 Solution Diff 1	0.9727 0.9707 %Urban 0.9704 0.9713 0.9703 %Urban 0.9757 0.9757 Sprd 22 24 2	110224688 114080625 IntSect 121348125 108149062 109358438 IntSect 111889688 109082812 109454062 Brd 19 21	526350938 540078750 <u>Union</u> 571530938 505822500 512370000 <u>Union</u> 533908125 520050938 518504062 <u>SIRs</u> 38 41	0.2094 0.2112 LeeSalee 0.2123 0.2138 0.2134 LeeSalee 0.2096 0.2098 0.2111 RdGr 59 61 2	6 19 22 42 64 6 19 24 40 64 6 19 22 40 64
26 20 TOP 3 Run 8 1 3 TOP 3 Run 12 2 11 8 Run Fr Run 10 11 18 20 11 18 20 11	0.9828 0.9828 SLOPE Pop 0.9796 0.9797 % URBAN Pop 0.9815 0.9838 0.9804 equency ir Freq. 5 3 2 2 2 2 2 2	0.9828 0.9828 Area 0.9796 0.9797 0.9797 Area 0.9815 0.9838 0.9804	0.9828 0.9828 Compare 0.9796 0.9797 0.9797 0.9815 0.9838 0.9804 Diff 6 4 4 6 6 4 4 6 6	0.2472 0.2981 Clusters 0.2106 0.6338 0.8703 Clusters 0.4528 0.5087 0.4195 Sprd 19 19 21 19 19	0.9797 0.9785 Perimeter 0.9694 0.9793 0.9837 Perimeter 0.977 0.9833 0.9818 Brd 22 24 24 22 24 22 24	0.9949 0.9929 Clst Size 0.9945 0.9942 Clst Size 0.9943 0.9943 0.994 SIRs 40 40 40 42 42 42 42	0.98 0.9804 Lat 0.976 0.9771 0.976 Lat 0.9786 0.9809 0.9802 RdGr 62 62 62 62 62 62 62 62 62 62	0.9871 0.9867 Lon 0.9842 0.9851 0.9832 Lon 0.9854 0.9876 0.9865	0.0056 0.009 Slope 0.0228 0.0154 0.0127 Slope 0.0046 0.0009 0.0047 Solution Diff 1 3 2	0.9727 0.9707 %Urban 0.9704 0.9713 0.9703 %Urban 0.9763 0.9757 0.9757 Sprd	110224688 114080625 IntSect 121348125 108149062 109358438 IntSect 111889688 109062812 109454062 Brd 19	526350938 540078750 <u>Union</u> 571530938 505822500 512370000 <u>Union</u> 533908125 520050938 518504062 <u>SIRS</u> 38 41 3	0.2094 0.2112 LeeSalee 0.2123 0.2138 0.2134 LeeSalee 0.2096 0.2098 0.2111 RdGr 59 61	6 19 22 42 64 6 19 24 40 64 6 19 22 40 64 Diff Sprd Brd SIRs RdGr 6 21 24 40 62 4 19 22 40 62 4 19 24 40 62 4 19 24 40 62 Diff Sprd Brd SIRs RdGr 6 21 24 40 62 4 19 24 40 62 6 19 22 40 62 6 19 22 40 62 6 19 22 40 62 7 19 24 42 62 6 19 24 42 62 8 19 24 42 62 8 19 24 42 62
26 20 20 20 20 20 20 20 20 20 20 20 20 20	0.9828 0.9828 SLOPE Pop 0.9797 0.9797 % URBAN Pop 0.9815 0.9838 0.9804 equency in Freq. 5 3 2 2 2 2 2 2 1 1	0.9828 0.9828 Area 0.9796 0.9797 0.9797 Area 0.9815 0.9838 0.9804	0.9828 0.9828 Compare 0.9796 0.9797 0.9797 0.9815 0.9838 0.9804 Diff 6 4 4 6 6 4 4 6 6	0.2472 0.2981 Clusters 0.2106 0.6338 0.8703 Clusters 0.4528 0.5087 0.4195 Sprd 19 19 21 19 19 19	0.9797 0.9785 Perimeter 0.9694 0.9793 0.9837 Perimeter 0.977 0.9833 0.9818 Brd 22 24 24 22 24 22 24	0.9949 0.9929 Clst Size 0.9945 0.9942 Clst Size 0.9943 0.9943 0.994 SIRs 40 40 40 42 42 42 42	0.98 0.9804 Lat 0.976 0.9771 0.976 Lat 0.9786 0.9809 0.9802 RdGr 62 62 62 62 62 62 62 62 62 62	0.9871 0.9867 Lon 0.9842 0.9851 0.9832 Lon 0.9854 0.9876 0.9865	0.0056 0.009 Slope 0.0228 0.0154 0.0127 Slope 0.0046 0.0009 0.0047 Solution Diff 1 3 2	0.9727 0.9707 %Urban 0.9703 0.9703 %Urban 0.9763 0.9757 0.9757 Sprd 22 24 2	110224688 114080625 IntSect 121348125 108149062 109358438 IntSect 111899688 109082812 109454062 Brd 19 21 2	526350938 540078750 <u>Union</u> 571530938 505822500 512370000 <u>Union</u> 533908125 520050938 518504062 <u>SIRs</u> 38 41 3	0.2094 0.2112 LeeSalee 0.2123 0.2138 0.2134 LeeSalee 0.2096 0.2098 0.2111 RdGr 59 61 2	6 19 22 42 64 6 19 24 40 64 6 19 22 40 64
26 20 TOP 3 Run 8 1 3 TOP 3 Run 12 2 11 1 18 20 11 8 8 12 17 17	0.9828 0.9828 SLOPE Pop 0.9797 0.9797 % URBAN Pop 0.9815 0.9838 0.9804 equency ir Freq. 5 3 2 2 2 2 2 2 2 1 1 1	0.9828 0.9828 Area 0.9796 0.9797 0.9797 Area 0.9815 0.9838 0.9804	0.9828 0.9828 Compare 0.9796 0.9797 0.9797 0.9815 0.9838 0.9804 Diff 6 4 4 6 6 4 4 6 6	0.2472 0.2981 Clusters 0.2106 0.6338 0.8703 Clusters 0.4528 0.5087 0.4195 Sprd 19 19 21 19 19 19	0.9797 0.9785 Perimeter 0.9694 0.9793 0.9837 Perimeter 0.977 0.9833 0.9818 Brd 22 24 24 22 24 22 24	0.9949 0.9929 Clst Size 0.9945 0.9942 Clst Size 0.9943 0.9943 0.994 SIRs 40 40 40 42 42 42 42	0.98 0.9804 Lat 0.976 0.9771 0.976 Lat 0.9786 0.9809 0.9802 RdGr 62 62 62 62 62 62 62 62 62 62	0.9871 0.9867 Lon 0.9842 0.9851 0.9832 Lon 0.9854 0.9876 0.9865	0.0056 0.009 Slope 0.0228 0.0154 0.0127 Slope 0.0046 0.0009 0.0047 Solution Diff 1 3 2	0.9727 0.9707 %Urban 0.9703 0.9703 %Urban 0.9763 0.9757 0.9757 Sprd 22 24 2	110224688 114080625 IntSect 121348125 108149062 109358438 IntSect 111889688 109082812 109454062 Brd 19 21	526350938 540078750 <u>Union</u> 571530938 505822500 512370000 <u>Union</u> 533908125 520050938 518504062 <u>SIRs</u> 38 41 3	0.2094 0.2112 LeeSalee 0.2123 0.2138 0.2134 LeeSalee 0.2096 0.2098 0.2111 RdGr 59 61 2	6 19 22 42 64 6 19 24 40 64 6 19 22 40 64
26 20 20 20 20 20 20 20 20 20 20 20 20 20	0.9828 0.9828 SLOPE Pop 0.9796 0.9797 0.9797 ** URBAN Pop 0.9815 0.9838 0.9804 equency ir Freq. 5 3 2 2 2 2 2 1 1 1 1	0.9828 0.9828 Area 0.9796 0.9797 0.9797 Area 0.9815 0.9838 0.9804	0.9828 0.9828 Compare 0.9796 0.9797 0.9797 0.9815 0.9838 0.9804 Diff 6 4 4 6 6 4 4 6 6	0.2472 0.2981 Clusters 0.2106 0.6338 0.8703 Clusters 0.4528 0.5087 0.4195 Sprd 19 19 21 19 19 19	0.9797 0.9785 Perimeter 0.9694 0.9793 0.9837 Perimeter 0.977 0.9833 0.9818 Brd 22 24 24 22 24 22 24	0.9949 0.9929 Clst Size 0.9945 0.9942 Clst Size 0.9943 0.9943 0.994 SIRs 40 40 40 42 42 42 42	0.98 0.9804 Lat 0.976 0.9771 0.976 Lat 0.9786 0.9809 0.9802 RdGr 62 62 62 62 62 62 62 62 62 64	0.9871 0.9867 Lon 0.9842 0.9851 0.9832 Lon 0.9854 0.9876 0.9865	0.0056 0.009 Slope 0.0228 0.0154 0.0127 Slope 0.0046 0.0009 0.0047 Solution Diff 1 3 2	0.9727 0.9707 %Urban 0.9703 0.9703 %Urban 0.9763 0.9757 0.9757 Sprd 22 24 2	110224688 114080625 IntSect 121348125 108149062 109358438 IntSect 111899688 109082812 109454062 Brd 19 21 2	526350938 540078750 <u>Union</u> 571530938 505822500 512370000 <u>Union</u> 533908125 520050938 518504062 <u>SIRs</u> 38 41 3	0.2094 0.2112 LeeSalee 0.2123 0.2138 0.2134 LeeSalee 0.2096 0.2098 0.2111 RdGr 59 61 2	6 19 22 42 64 6 19 24 40 64 6 19 22 40 64
26 20 20 20 20 20 20 20 20 20 20 20 20 20	0.9828 0.9828 SLOPE Pop 0.9797 0.9797 0.9815 0.9838 0.9804 equency ir Fred. 5 3 2 2 2 2 2 2 1 1 1 1	0.9828 0.9828 Area 0.9796 0.9797 0.9797 Area 0.9815 0.9838 0.9804	0.9828 0.9828 Compare 0.9796 0.9797 0.9797 0.9815 0.9838 0.9804 Diff 6 4 4 6 6 4 4 6 6	0.2472 0.2981 Clusters 0.2106 0.6338 0.8703 Clusters 0.4528 0.5087 0.4195 Sprd 19 19 21 19 19 19	0.9797 0.9785 Perimeter 0.9694 0.9793 0.9837 Perimeter 0.977 0.9833 0.9818 Brd 22 24 24 22 24 22 24	0.9949 0.9929 Clst Size 0.9945 0.9942 Clst Size 0.9943 0.9943 0.994 SIRs 40 40 40 42 42 42 42	0.98 0.9804 Lat 0.976 0.9771 0.976 Lat 0.9786 0.9809 0.9802 RdGr 62 62 62 62 62 62 62 62 62 64	0.9871 0.9867 Lon 0.9842 0.9851 0.9832 Lon 0.9854 0.9876 0.9865	0.0056 0.009 Slope 0.0228 0.0154 0.0127 Slope 0.0046 0.0009 0.0047 Solution Diff 1 3 2 2	0.9727 0.9707 %Urban 0.9703 0.9703 %Urban 0.9763 0.9757 0.9757 Sprd 22 24 2	110224688 114080625 IntSect 121348125 108149062 109358438 IntSect 111899688 109082812 109454062 Brd 19 21 2	526350938 540078750 <u>Union</u> 571530938 505822500 512370000 <u>Union</u> 533908125 520050938 518504062 <u>SIRs</u> 38 41 3	0.2094 0.2112 LeeSalee 0.2123 0.2138 0.2134 LeeSalee 0.2096 0.2098 0.2111 RdGr 59 61 2	6 19 22 42 64 6 19 24 40 64 6 19 22 40 64
26 20 20 20 20 20 20 20 20 20 20 20 20 20	0.9828 0.9828 SLOPE Pop 0.9796 0.9797 0.9797 ** URBAN Pop 0.9815 0.9838 0.9804 equency ir Freq. 5 3 2 2 2 2 2 1 1 1 1	0.9828 0.9828 Area 0.9796 0.9797 0.9797 Area 0.9815 0.9838 0.9804	0.9828 0.9828 Compare 0.9796 0.9797 0.9797 0.9815 0.9838 0.9804 Diff 6 4 4 6 6 4 4 6 6	0.2472 0.2981 Clusters 0.2106 0.6338 0.8703 Clusters 0.4528 0.5087 0.4195 Sprd 19 19 21 19 19 19	0.9797 0.9785 Perimeter 0.9694 0.9793 0.9837 Perimeter 0.977 0.9833 0.9818 Brd 22 24 24 22 24 22 24	0.9949 0.9929 Clst Size 0.9945 0.9942 Clst Size 0.9943 0.9943 0.994 SIRs 40 40 40 42 42 42 42	0.98 0.9804 Lat 0.976 0.9771 0.976 Lat 0.9786 0.9809 0.9802 RdGr 62 62 62 62 62 62 62 62 62 64	0.9871 0.9867 Lon 0.9842 0.9851 0.9832 Lon 0.9854 0.9876 0.9865	0.0056 0.009 Slope 0.0228 0.0154 0.0127 Slope 0.0046 0.0009 0.0047 Solution Diff 1 3 2 2	0.9727 0.9707 %Urban 0.9703 0.9703 %Urban 0.9763 0.9757 0.9757 Sprd 22 24 2	110224688 114080625 IntSect 121348125 108149062 109358438 IntSect 111899688 109082812 109454062 Brd 19 21 2	526350938 540078750 <u>Union</u> 571530938 505822500 512370000 <u>Union</u> 533908125 520050938 518504062 <u>SIRs</u> 38 41 3	0.2094 0.2112 LeeSalee 0.2123 0.2138 0.2134 LeeSalee 0.2096 0.2098 0.2111 RdGr 59 61 2	6 19 22 42 64 6 19 24 40 64 6 19 22 40 64
26 20 20 20 20 20 20 20 20 20 20 20 20 20	0.9828 0.9828 SLOPE Pop 0.9797 0.9797 % URBAN Pop 0.9815 0.9838 0.9804 equency ir Freq. 5 3 2 2 2 2 2 2 1 1 1 1 1 1	0.9828 0.9828 Area 0.9796 0.9797 0.9797 Area 0.9815 0.9838 0.9804	0.9828 0.9828 Compare 0.9796 0.9797 0.9797 0.9815 0.9838 0.9804 Diff 6 4 4 6 6 4 4 6 6	0.2472 0.2981 Clusters 0.2106 0.6338 0.8703 Clusters 0.4528 0.5087 0.4195 Sprd 19 19 21 19 19 19	0.9797 0.9785 Perimeter 0.9694 0.9793 0.9837 Perimeter 0.977 0.9833 0.9818 Brd 22 24 24 22 24 22 24	0.9949 0.9929 Clst Size 0.9945 0.9942 Clst Size 0.9943 0.9943 0.994 SIRs 40 40 40 42 42 42 42	0.98 0.9804 Lat 0.976 0.9771 0.976 Lat 0.9786 0.9809 0.9802 RdGr 62 62 62 62 62 62 62 62 62 64	0.9871 0.9867 Lon 0.9842 0.9851 0.9832 Lon 0.9854 0.9876 0.9865	0.0056 0.009 Slope 0.0228 0.0154 0.0127 Slope 0.0046 0.0009 0.0047 Solution Diff 1 3 2 2	0.9727 0.9707 %Urban 0.9703 0.9703 %Urban 0.9763 0.9757 0.9757 Sprd 22 24 2	110224688 114080625 IntSect 121348125 108149062 109358438 IntSect 111899688 109082812 109454062 Brd 19 21 2	526350938 540078750 <u>Union</u> 571530938 505822500 512370000 <u>Union</u> 533908125 520050938 518504062 <u>SIRs</u> 38 41 3	0.2094 0.2112 LeeSalee 0.2123 0.2138 0.2134 LeeSalee 0.2096 0.2098 0.2111 RdGr 59 61 2	6 19 22 42 64 6 19 24 40 64 6 19 22 40 64

		_													
TOP 3	LEESALEE	:													
			Compare	Clusters	Perimeter	Clet Size	Lat	Lon	Slone	%Hrban	IntSect	Union	I agealag	Diff Sprd I	Brd SIRs RdGr
29	0.9701	0.9701	0 0701	0.1397	0.9807	0.0805	0.0668	0.0765	0.0046	0.0605	118580062	537705000	0.2205		19 41 61
15	0.9696	0.9696	0.9696		0.9786			0.9773				541892812	0.2191		21 41 59
27	0.9090	0.9090	0.9090		0.975							517919062	0.2181		21 41 61
21	0.9723	0.9723	0.9723	0.2365	0.975	0.9944	0.9686	0.9773	0.0031	0.9631	112969688	517919062			21 41 61
TOD 2	AREA													1 24	21 41 01
		A ===	C	Chuatara	Darimeter	Clat Cina	1 -4		Class	0/11-6	IntCoat	Union	LasCalas	Diff C==4 1	D-4 CID
10		Area 0.9794		0.3036	Perimeter 0.9822			0.9834				546778125			Brd SIRs RdGr 19 41 59
					0.9622								0.2133		
12 18	0.9782	0.9782	0.9782		0.9789			0.9824				546567188	0.215		
18	0.978	0.978	0.978	0.3791	0.9864	0.9903	0.974	0.9812	0.0057	0.9678	114322500	537806250	0.2126		10 00 01
														3 22	19 41 59
	CLUSTER		_											D	
					Perimeter										Brd SIRs RdGr
26		0.9766		0.9354	0.9846			0.9809				536934375	0.2121		19 41 61
17	0.9734	0.9734			0.984			0.9793			109721250		0.2145		19 38 61
20	0.9774	0.9774	0.9774	0.6595	0.9775	0.9955	0.9738	0.9816	0.0095	0.9708	117230625	546696562	0.2144		21 38 61
			_											3 22	19 38 61
	CLUSTER														
															Brd SIRs RdGr
18	0.978	0.978		0.3791					0.0057			537806250	0.2126		19 38 61
26	0.9766	0.9766	0.9766		0.9846			0.9809				536934375	0.2121		19 41 61
17	0.9734	0.9734	0.9734	0.6662	0.984	0.9857	0.9716	0.9793	0.0051	0.9667	109721250	511413750	0.2145		19 38 61
														3 22	19 38 61
	CLUSTER														
Run	Pop	Area	Compare	Clusters	Perimeter	Clst Size	Lat	Lon	Slope	%Urban	IntSect	Union		Diff Sprd I	
8	0.9759	0.9759	0.9759	0.1676	0.9785	0.9961	0.9734	0.9811	0.0044	0.9667	124377188	579197812	0.2147		21 38 59
20		0.9774		0.6595				0.9816				546696562	0.2144		21 38 61
28	0.9758	0.9758	0.9758	0.0001	0.9765	0.9955	0.9733	0.981	0.004	0.9667	116755312	543225938	0.2149		21 41 61
														3 22	21 38 61
TOP 3	HORIZONT	AL ALIGNN	MENT												
Run	Pop	Area	Compare	Clusters	Perimeter	Clst_Size	Lat	Lon	Slope	%Urban	IntSect	Union	LeeSalee	Diff Sprd I	Brd SIRs RdGr
10		0.9794		0.3036				0.9834	0.0076	0.9716	116614688	546778125	0.2133	3 22	19 41 59
12	0.9782	0.9782	0.9782	0.0396	0.9789				0.0072	0.9708	117534375	546567188	0.215	3 22	21 41 59
18		0.978		0.3791					0.0057			537806250	0.2126		19 38 61
															19 41 59
TOP 3	VERTICAL	ALIGNMEN	IT											v	
				Clusters	Perimeter	Clst Size	l at	Lon	Slone	%Urban	IntSect	Union	LeeSalee	Diff Sprd I	Brd SIRs RdGr
10	0.9794	0.9794	0.9794		0.9822			0.9834	0.0076		116614688		0.2133		19 41 59
12	0.9782	0.9782	0.9782		0.9789			0.9824	0.0072			546567188	0.215		21 41 59
4	0.9768	0.9768	0.9768		0.9814			0.9817				543574688	0.2162		21 38 59
7	0.3700	0.5700	0.5700	0.3020	0.3014	0.5540	0.5151	0.3017	0.0004	0.3007	117300230	343374000			21 41 59
TOP 3	SLOPE													3 22	21 41 33
		Area	Compare	Cluetore	Perimeter	Clet Size	l at	Lon	Slone	%Hrban	IntSect	Union	I aaSalaa	Diff Sprd I	Brd SIRs RdGr
25	0.9716	0.9716	0.9716		0.9807			0.9771				506888438			19 41 61
14	0.9710	0.9710													
2	0.9739	0.8138										E71E67E00		1 22	
2		0.070	0.9739		0.9727			0.9784	0.0153	0.962	122526562	571567500	0.2144	3 24	19 41 59
	0.070	0.976		0.2739 0.4743						0.962	122526562	571567500 532912500	0.2144 0.2128	3 24 3 22	19 41 59 19 38 59
	0.0.0	0.976							0.0153	0.962	122526562		0.2144 0.2128	3 24 3 22	19 41 59
	% URBAN	0.010	0.976	0.4743	0.9825	0.9951	0.9728	0.9809	0.0153 0.0144	0.962 0.9736	122526562 113388750	532912500	0.2144 0.2128	3 24 3 22 3 22	19 41 59 19 38 59 19 41 59
Run	Pop	Area	0.976 Compare	0.4743 Clusters	0.9825	0.9951 <u>Clst Size</u>	0.9728	0.9809 Lon	0.0153 0.0144 Slope	0.962 0.9736 %Urban	122526562 113388750 IntSect	532912500 <u>Union</u>	0.2144 0.2128 <u>LeeSalee</u>	3 24 3 22 3 22 Diff Sprd 1	19 41 59 19 38 59 19 41 59 Brd SIRs RdGr
Run 2	Pop 0.976	Area 0.976	0.976 Compare 0.976	0.4743 <u>Clusters</u> 0.4743	0.9825 <u>Perimeter</u> 0.9825	0.9951 Clst Size 0.9951	0.9728 <u>Lat</u> 0.9728	0.9809 <u>Lon</u> 0.9809	0.0153 0.0144 Slope 0.0144	0.962 0.9736 %Urban 0.9736	122526562 113388750 <u>IntSect</u> 113388750	532912500 <u>Union</u> 532912500	0.2144 0.2128 LeeSalee 0.2128	3 24 3 22 3 22 Diff Sprd 1 3 22	19 41 59 19 38 59 19 41 59 Brd SIRs RdGr 19 38 59
Run 2 10	Pop 0.976 0.9794	Area 0.976 0.9794	0.976 Compare 0.976 0.9794	0.4743 <u>Clusters</u> 0.4743 0.3036	0.9825 Perimeter 0.9825 0.9822	0.9951 Clst Size 0.9951 0.995	0.9728 <u>Lat</u> 0.9728 0.9753	0.9809 <u>Lon</u> 0.9809 0.9834	0.0153 0.0144 Slope 0.0144 0.0076	0.962 0.9736 %Urban 0.9736 0.9716	122526562 113388750 IntSect 113388750 116614688	532912500 <u>Union</u> 532912500 546778125	0.2144 0.2128 LeeSalee 0.2128 0.2133	3 24 3 22 3 22 Diff Sprd ! 3 22 3 22	19 41 59 19 38 59 19 41 59 Brd SIRs RdGr 19 38 59 19 41 59
Run 2	Pop 0.976 0.9794	Area 0.976	0.976 Compare 0.976	0.4743 <u>Clusters</u> 0.4743 0.3036	0.9825 Perimeter 0.9825 0.9822	0.9951 Clst Size 0.9951 0.995	0.9728 <u>Lat</u> 0.9728 0.9753	0.9809 <u>Lon</u> 0.9809 0.9834	0.0153 0.0144 Slope 0.0144	0.962 0.9736 %Urban 0.9736 0.9716	122526562 113388750 IntSect 113388750 116614688	532912500 <u>Union</u> 532912500	0.2144 0.2128 LeeSalee 0.2128 0.2133 0.2149	3 24 3 22 3 22 Diff Sprd 9 3 22 3 22 1 22	19 41 59 19 38 59 19 41 59 Brd SIRS RdGr 19 38 59 19 41 59 19 41 59
Run 2 10	Pop 0.976 0.9794	Area 0.976 0.9794	0.976 Compare 0.976 0.9794	0.4743 <u>Clusters</u> 0.4743 0.3036	0.9825 Perimeter 0.9825 0.9822	0.9951 Clst Size 0.9951 0.995	0.9728 <u>Lat</u> 0.9728 0.9753	0.9809 <u>Lon</u> 0.9809 0.9834	0.0153 0.0144 Slope 0.0144 0.0076	0.962 0.9736 %Urban 0.9736 0.9716	122526562 113388750 IntSect 113388750 116614688	532912500 <u>Union</u> 532912500 546778125	0.2144 0.2128 LeeSalee 0.2128 0.2133 0.2149	3 24 3 22 3 22 Diff Sprd 9 3 22 3 22 1 22	19 41 59 19 38 59 19 41 59 Brd SIRs RdGr 19 38 59 19 41 59
Run 2 10 9	0.976 0.9794 0.9731	Area 0.976 0.9794 0.9731	0.976 Compare 0.976 0.9794	0.4743 <u>Clusters</u> 0.4743 0.3036	0.9825 Perimeter 0.9825 0.9822	0.9951 Clst Size 0.9951 0.995	0.9728 <u>Lat</u> 0.9728 0.9753	0.9809 <u>Lon</u> 0.9809 0.9834 0.9786	0.0153 0.0144 Slope 0.0144 0.0076 0.0062	0.962 0.9736 %Urban 0.9736 0.9716 0.9713	122526562 113388750 IntSect 113388750 116614688	532912500 <u>Union</u> 532912500 546778125	0.2144 0.2128 LeeSalee 0.2128 0.2133 0.2149	3 24 3 22 3 22 Diff Sprd 9 3 22 3 22 1 22	19 41 59 19 38 59 19 41 59 Brd SIRS RdGr 19 38 59 19 41 59 19 41 59
2 10 9	Pop 0.976 0.9794 0.9731	Area 0.976 0.9794 0.9731	0.976 Compare 0.976 0.9794 0.9731	0.4743 <u>Clusters</u> 0.4743 0.3036 0.0223	0.9825 Perimeter 0.9825 0.9822 0.9809	0.9951 Clst Size 0.9951 0.995 0.9919	0.9728 <u>Lat</u> 0.9728 0.9753 0.9692	0.9809 <u>Lon</u> 0.9809 0.9834 0.9786	0.0153 0.0144 Slope 0.0144 0.0076 0.0062 Solution	0.962 0.9736 <u>%Urban</u> 0.9736 0.9716 0.9713	122526562 113388750 IntSect 113388750 116614688 110565000	532912500 <u>Union</u> 532912500 546778125 514541250	0.2144 0.2128 LeeSalee 0.2128 0.2133 0.2149	3 24 3 22 3 22 Diff Sprd 9 3 22 3 22 1 22	19 41 59 19 38 59 19 41 59 Brd SIRS RdGr 19 38 59 19 41 59 19 41 59
2 10 9 Run F Run	Pop 0.976 0.9794 0.9731 Frequency in Freq.	Area 0.976 0.9794 0.9731	0.976 Compare 0.976 0.9794 0.9731	0.4743 Clusters 0.4743 0.3036 0.0223 Sprd	0.9825 Perimeter 0.9825 0.9822 0.9809 Brd	0.9951 <u>CIst Size</u> 0.9951 0.995 0.9919	0.9728 <u>Lat</u> 0.9728 0.9753 0.9692	0.9809 <u>Lon</u> 0.9809 0.9834 0.9786	0.0153 0.0144 Slope 0.0144 0.0076 0.0062 Solution Diff	0.962 0.9736 <u>%Urban</u> 0.9736 0.9716 0.9713	122526562 113388750 <u>IntSect</u> 113388750 116614688 110565000 <u>Brd</u>	532912500 <u>Union</u> 532912500 546778125 514541250 <u>SIRs</u>	0.2144 0.2128 LeeSalee 0.2128 0.2133 0.2149	3 24 3 22 3 22 Diff Sprd 9 3 22 3 22 1 22	19 41 59 19 38 59 19 41 59 Brd SIRS RdGr 19 38 59 19 41 59 19 41 59
Run F Run F Run 10	Pop 0.976 0.9794 0.9731 requency in <u>Freq.</u> 4	Area 0.976 0.9794 0.9731	0.976 Compare 0.976 0.9794 0.9731 Diff 3	0.4743 <u>Clusters</u> 0.4743 0.3036 0.0223 <u>Sprd</u> 22	0.9825 Perimeter 0.9825 0.9822 0.9809 Brd 19	0.9951 Clst Size 0.9951 0.995 0.9919 SIRs 41	0.9728 <u>Lat</u> 0.9728 0.9753 0.9692 <u>RdGr</u> 59	0.9809 <u>Lon</u> 0.9809 0.9834 0.9786	0.0153 0.0144 Slope 0.0144 0.0076 0.0062 Solution Diff 3	0.962 0.9736 %Urban 0.9736 0.9716 0.9713 Sprd 22	122526562 113388750 IntSect 113388750 116614688 110565000 Brd 19	532912500 <u>Union</u> 532912500 546778125 514541250 <u>SIRs</u> 38	0.2144 0.2128 LeeSalee 0.2128 0.2133 0.2149 <u>RdGr</u> 61	3 24 3 22 3 22 Diff Sprd 9 3 22 3 22 1 22	19 41 59 19 38 59 19 41 59 Brd SIRS RdGr 19 38 59 19 41 59 19 41 59
Run F Run F Run 10 10	0.976 0.9794 0.9731 (requency in <u>Freq.</u> 4	Area 0.976 0.9794 0.9731	0.976 Compare 0.976 0.9794 0.9731 Diff 3 3	0.4743 Clusters 0.4743 0.3036 0.0223 Sprd 22 22	0.9825 Perimeter 0.9825 0.9822 0.9809 Brd 19 21	0.9951 <u>Clst Size</u> 0.9951 0.995 0.9919 <u>SIRs</u> 41 41	0.9728 Lat 0.9728 0.9753 0.9692 RdGr 59 59	0.9809 <u>Lon</u> 0.9809 0.9834 0.9786	0.0153 0.0144 Slope 0.0144 0.0076 0.0062 Solution Diff 3 1	0.962 0.9736 **Wurban 0.9736 0.9716 0.9713 **Sprd 22 24	122526562 113388750 IntSect 113388750 116614688 110565000 Brd 19 19	532912500 <u>Union</u> 532912500 546778125 514541250 <u>SIRs</u> 38 41	0.2144 0.2128 LeeSalee 0.2128 0.2133 0.2149 RdGr 61 61	3 24 3 22 3 22 Diff Sprd 9 3 22 3 22 1 22 3 22	19 41 59 19 38 59 19 41 59 Brd SIRS RdGr 19 38 59 19 41 59 19 41 59
Run F Run F Run 10 10 12 18	0.976 0.9794 0.9731 requency ir Freq. 4 3 3	Area 0.976 0.9794 0.9731	0.976 Compare 0.976 0.9794 0.9731 Diff 3 3 3 3	0.4743 Clusters 0.4743 0.3036 0.0223 Sprd 22 22 22 22	0.9825 Perimeter 0.9825 0.9822 0.9809 Brd 19 21 19	0.9951 CIst Size 0.9951 0.995 0.9919 SIRs 41 41 38	0.9728 Lat 0.9728 0.9753 0.9692 RdGr 59 61	0.9809 <u>Lon</u> 0.9809 0.9834 0.9786	0.0153 0.0144 Slope 0.0144 0.0076 0.0062 Solution Diff 3	0.962 0.9736 %Urban 0.9736 0.9716 0.9713 Sprd 22	122526562 113388750 IntSect 113388750 116614688 110565000 Brd 19	532912500 <u>Union</u> 532912500 546778125 514541250 <u>SIRs</u> 38	0.2144 0.2128 LeeSalee 0.2128 0.2133 0.2149 <u>RdGr</u> 61	3 24 3 22 3 22 Diff Sprd 9 3 22 3 22 1 22	19 41 59 19 38 59 19 41 59 Brd SIRS RdGr 19 38 59 19 41 59 19 41 59
Run F Run F Run 10 12 18 2	0.976 0.9794 0.9731 (requency ir Freq. 4 3 3 2	Area 0.976 0.9794 0.9731	0.976 Compare 0.976 0.9794 0.9731 Diff 3 3 3 3 3 3	0.4743 Clusters 0.4743 0.3036 0.0223 Sprd 22 22 22 22 22	0.9825 Perimeter 0.9825 0.9822 0.9809 Brd 19 21 19 19 19	0.9951 Clst Size 0.9951 0.995 0.9919 SIRs 41 41 38 38	0.9728 Lat 0.9728 0.9753 0.9692 RdGr 59 61 59	0.9809 <u>Lon</u> 0.9809 0.9834 0.9786	0.0153 0.0144 Slope 0.0144 0.0076 0.0062 Solution Diff 3 1 1	0.962 0.9736 <u>%Urban</u> 0.9736 0.9716 0.9713 <u>Sprd</u> 22 24 22	122526562 113388750 IntSect 113388750 116614688 110565000 Brd 19 19 19	532912500 <u>Union</u> 532912500 546778125 514541250 <u>SIRs</u> 38 41 41	0.2144 0.2128 LeeSalee 0.2128 0.2133 0.2149 RdGr 61 61	3 24 3 22 3 22 Diff Sprd 1 3 22 3 22 1 22 3 22 5 Start	19 41 59 19 38 59 19 41 59 Brd SIRS RdGr 19 38 59 19 41 59 19 41 59
Run F 2 10 9 Run F Run 10 12 18 2 17	0.976 0.9794 0.9731 Frequency in Fred. 4 3 3 2 2	Area 0.976 0.9794 0.9731	0.976 Compare 0.976 0.9794 0.9731 Diff 3 3 3 1	0.4743 Clusters 0.4743 0.3036 0.0223 Sprd 22 22 22 22 22	0.9825 Perimeter 0.9825 0.9822 0.9809 Brd 19 21 19 19 19	0.9951 Clst Size 0.9951 0.995 0.9919 SIRs 41 41 38 38 38 38	0.9728 <u>Lat</u> 0.9728 0.9753 0.9692 <u>RdGr</u> 59 59 61 59 61	0.9809 <u>Lon</u> 0.9809 0.9834 0.9786	0.0153 0.0144 Slope 0.0144 0.0076 0.0062 Solution Diff 3 1	0.962 0.9736 **Wurban 0.9736 0.9716 0.9713 **Sprd 22 24	122526562 113388750 IntSect 113388750 116614688 110565000 Brd 19 19	532912500 <u>Union</u> 532912500 546778125 514541250 <u>SIRs</u> 38 41	0.2144 0.2128 LeeSalee 0.2128 0.2133 0.2149 RdGr 61 61	3 24 3 22 3 22 Diff Sprd 9 3 22 3 22 1 22 3 22	19 41 59 19 38 59 19 41 59 Brd SIRS RdGr 19 38 59 19 41 59 19 41 59
Run F 2 10 9 Run F Run 10 12 18 2 17 20	0.976 0.9794 0.9731 (requency in Freq. 4 3 3 2 2 2	Area 0.976 0.9794 0.9731	0.976 Compare 0.976 0.9794 0.9731 Diff 3 3 3 3 1 3 1 3	0.4743 Clusters 0.4743 0.3036 0.0223 Sprd 22 22 22 22 22 22 22 22 22	0.9825 Perimeter 0.9825 0.9822 0.9809 Brd 19 21 19 19 19 21	0.9951 Clst Size 0.9951 0.995 0.9919 SIRS 41 41 41 38 38 38 38 38	0.9728 <u>Lat</u> 0.9728 0.9753 0.9692 <u>RdGr</u> 59 59 61 59 61 61	0.9809 <u>Lon</u> 0.9809 0.9834 0.9786	0.0153 0.0144 Slope 0.0144 0.0076 0.0062 Solution Diff 3 1 1	0.962 0.9736 %Urban 0.9736 0.9716 0.9713 Sprd 22 24 22 24	122526562 113388750 IntSect 113388750 116614688 110565000 Brd 19 19 19	532912500 <u>Union</u> 532912500 546778125 514541250 <u>SIRs</u> 38 41 41 41	0.2144 0.2128 LeeSalee 0.2128 0.2133 0.2149 RdGr 61 61 61	3 24 3 22 3 22 0 2 2 3 22 3 22 1 22 3 22 5 Start	19 41 59 19 38 59 19 41 59 Brd SIRS RdGr 19 38 59 19 41 59 19 41 59
Run F Run F Run 10 10 12 18 2 17 20 26	909 0.9794 0.9791 0.9731 Frequency in Frea. 4 3 3 2 2 2 2	Area 0.976 0.9794 0.9731	0.976 Compare 0.976 0.9794 0.9731 Diff 3 3 3 1	0.4743 Clusters 0.4743 0.3036 0.0223 Sprd 22 22 22 22 22 22 22 22	0.9825 Perimeter 0.9825 0.9822 0.9809 Brd 19 21 19 19 19	0.9951 Clst Size 0.9951 0.995 0.9919 SIRs 41 41 38 38 38 38	0.9728 <u>Lat</u> 0.9728 0.9753 0.9692 <u>RdGr</u> 59 59 61 59 61	0.9809 <u>Lon</u> 0.9809 0.9834 0.9786	0.0153 0.0144 Slope 0.0144 0.0076 0.0062 Solution Diff 3 1 1	0.962 0.9736 <u>%Urban</u> 0.9736 0.9716 0.9713 <u>Sprd</u> 22 24 22	122526562 113388750 IntSect 113388750 116614688 110565000 Brd 19 19 19	532912500 <u>Union</u> 532912500 546778125 514541250 <u>SIRs</u> 38 41 41	0.2144 0.2128 LeeSalee 0.2128 0.2133 0.2149 RdGr 61 61	3 24 3 22 3 22 Diff Sprd 1 3 22 3 22 1 22 3 22 5 Start	19 41 59 19 38 59 19 41 59 Brd SIRS RdGr 19 38 59 19 41 59 19 41 59
Run F 2 10 9 Run F Run 10 12 18 2 17 20	0.976 0.9794 0.9731 (requency in Freq. 4 3 3 2 2 2	Area 0.976 0.9794 0.9731	0.976 Compare 0.976 0.9794 0.9731 Diff 3 3 3 3 1 3 1 3	0.4743 Clusters 0.4743 0.3036 0.0223 Sprd 22 22 22 22 22 22 22 22 22	0.9825 Perimeter 0.9825 0.9822 0.9809 Brd 19 21 19 19 19 21	0.9951 Clst Size 0.9951 0.995 0.9919 SIRS 41 41 41 38 38 38 38 38	0.9728 <u>Lat</u> 0.9728 0.9753 0.9692 <u>RdGr</u> 59 59 61 59 61 61	0.9809 <u>Lon</u> 0.9809 0.9834 0.9786	0.0153 0.0144 Slope 0.0144 0.0076 0.0062 Solution Diff 3 1 1 3	0.962 0.9736 %Urban 0.9736 0.9716 0.9713 Sprd 22 24 22 24 1	122526562 113388750 IntSect 113388750 116614688 110565000 Brd 19 19 19 21 1	532912500 <u>Union</u> 532912500 546778125 514541250 <u>SIRs</u> 38 41 41 41	0.2144 0.2128 LeeSalee 0.2128 0.2133 0.2149 RdGr 61 61 61	3 24 3 22 3 22 0 2 2 3 22 3 22 1 22 3 22 5 Start	19 41 59 19 38 59 19 41 59 Brd SIRS RdGr 19 38 59 19 41 59 19 41 59
Run F Run F Run 10 12 18 2 17 20 26 4 8	0.976 0.9794 0.9731 (requency in Frea. 4 3 3 2 2 2 2 2 1 1	Area 0.976 0.9794 0.9731	0.976 Compare 0.976 0.9794 0.9731 Diff 3 3 3 3 1 3 1 3	0.4743 Clusters 0.4743 0.3036 0.0223 Sprd 22 22 22 22 22 22 22 22 22	0.9825 Perimeter 0.9825 0.9822 0.9809 Brd 19 21 19 19 19 21	0.9951 Clst Size 0.9951 0.995 0.9919 SIRS 41 41 41 38 38 38 38 38	0.9728 <u>Lat</u> 0.9728 0.9753 0.9692 <u>RdGr</u> 59 59 61 59 61 61	0.9809 <u>Lon</u> 0.9809 0.9834 0.9786	0.0153 0.0144 Slope 0.0144 0.0076 0.0062 Solution Diff 3 1 1	0.962 0.9736 %Urban 0.9736 0.9716 0.9713 Sprd 22 24 22 24	122526562 113388750 IntSect 113388750 116614688 110565000 Brd 19 19 19	532912500 <u>Union</u> 532912500 546778125 514541250 <u>SIRs</u> 38 41 41 41	0.2144 0.2128 LeeSalee 0.2128 0.2133 0.2149 RdGr 61 61 61	3 24 3 22 3 22 0 2 2 3 22 3 22 1 22 3 22 5 Start	19 41 59 19 41 59 BY 41 59 BY 41 59 BY 41 59 19 41 59 19 41 59 19 41 59
Run F Run F Run 10 10 12 18 2 17 20 26 4	0.976 0.9794 0.9731 (requency ir <u>Frea.</u> 4 3 3 2 2 2 2 2	Area 0.976 0.9794 0.9731	0.976 Compare 0.976 0.9794 0.9731 Diff 3 3 3 3 1 3 1 3	0.4743 Clusters 0.4743 0.3036 0.0223 Sprd 22 22 22 22 22 22 22 22 22	0.9825 Perimeter 0.9825 0.9822 0.9809 Brd 19 21 19 19 19 21	0.9951 Clst Size 0.9951 0.995 0.9919 SIRS 41 41 41 38 38 38 38 38	0.9728 <u>Lat</u> 0.9728 0.9753 0.9692 <u>RdGr</u> 59 59 61 59 61 61	0.9809 <u>Lon</u> 0.9809 0.9834 0.9786	0.0153 0.0144 Slope 0.0144 0.0076 0.0062 Solution Diff 3 1 1 3	0.962 0.9736 %Urban 0.9736 0.9716 0.9713 Sprd 22 24 22 24 1	122526562 113388750 IntSect 113388750 116614688 110565000 Brd 19 19 19 19	532912500 <u>Union</u> 532912500 532912500 546778125 514541250 <u>SIRs</u> 38 41 41 41 1	0.2144 0.2128 LeeSalee 0.2128 0.2133 0.2149 RdGr 61 61 61 61	3 24 3 22 3 22 Diff Sprd 1 3 22 3 22 1 22 3 22 Start End Step	19 41 59 19 41 59 BY 41 59 BY 41 59 BY 41 59 19 41 59 19 41 59 19 41 59
Run F Run F Run 10 12 18 2 17 20 26 4 8	0.976 0.9794 0.9731 (requency in Frea. 4 3 3 2 2 2 2 2 1 1	Area 0.976 0.9794 0.9731	0.976 Compare 0.976 0.9794 0.9731 Diff 3 3 3 3 1 3 1 3	0.4743 Clusters 0.4743 0.3036 0.0223 Sprd 22 22 22 22 22 22 22 22 22	0.9825 Perimeter 0.9825 0.9822 0.9809 Brd 19 21 19 19 19 21	0.9951 Clst Size 0.9951 0.995 0.9919 SIRS 41 41 41 38 38 38 38 38	0.9728 <u>Lat</u> 0.9728 0.9753 0.9692 <u>RdGr</u> 59 59 61 59 61 61	0.9809 <u>Lon</u> 0.9809 0.9834 0.9786	0.0153 0.0144 Slope 0.0144 0.0076 0.0062 Solution Diff 3 1 1 3	0.962 0.9736 %Urban 0.9736 0.9716 0.9713 Sprd 22 24 22 24 1	122526562 113388750 IntSect 113388750 116614688 110565000 Brd 19 19 19 19	532912500 <u>Union</u> 532912500 532912500 546778125 514541250 <u>SIRs</u> 38 41 41 41 1	0.2144 0.2128 LeeSalee 0.2128 0.2133 0.2149 RdGr 61 61 61 61	3 24 3 22 3 22 Diff Sprd 1 3 22 3 22 1 22 3 22 Start End Step	19 41 59 19 41 59 BY 41 59 BY 41 59 BY 41 59 19 41 59 19 41 59 19 41 59
Run F Run F Run 10 10 10 112 118 22 177 206 4 8 9 9 14 15	Pop 0.976 0.9794 0.9731 requency ir Freq. 4 3 3 2 2 2 2 2 1 1	Area 0.976 0.9794 0.9731	0.976 Compare 0.976 0.9794 0.9731 Diff 3 3 3 3 1 3 1 3	0.4743 Clusters 0.4743 0.3036 0.0223 Sprd 22 22 22 22 22 22 22 22 22	0.9825 Perimeter 0.9825 0.9822 0.9809 Brd 19 21 19 19 19 21	0.9951 Clst Size 0.9951 0.995 0.9919 SIRS 41 41 41 38 38 38 38 38	0.9728 <u>Lat</u> 0.9728 0.9753 0.9692 <u>RdGr</u> 59 59 61 59 61 61	0.9809 <u>Lon</u> 0.9809 0.9834 0.9786	0.0153 0.0144 Slope 0.0144 0.0076 0.0062 Solution Diff 3 1 1 3	0.962 0.9736 %Urban 0.9736 0.9716 0.9713 Sprd 22 24 22 24 1	122526562 113388750 IntSect 113388750 116614688 110565000 Brd 19 19 19 19	532912500 <u>Union</u> 532912500 532912500 546778125 514541250 <u>SIRs</u> 38 41 41 41 1	0.2144 0.2128 LeeSalee 0.2128 0.2133 0.2149 RdGr 61 61 61 61	3 24 3 22 3 22 Diff Sprd 1 3 22 3 22 1 22 3 22 Start End Step	19 41 59 19 41 59 BY 41 59 BY 41 59 BY 41 59 19 41 59 19 41 59 19 41 59
Run F 2 10 9 Run F Run 10 12 18 2 2 17 20 26 4 8 9 14	0.976 0.9794 0.9791 0.9791 0.9791 0.9791 requency ir Freq. 4 3 3 2 2 2 2 1 1 1 1	Area 0.976 0.9794 0.9731	0.976 Compare 0.976 0.9794 0.9731 Diff 3 3 3 3 1 3 1 3	0.4743 Clusters 0.4743 0.3036 0.0223 Sprd 22 22 22 22 22 22 22 22 22	0.9825 Perimeter 0.9825 0.9822 0.9809 Brd 19 21 19 19 19 21	0.9951 Clst Size 0.9951 0.995 0.9919 SIRS 41 41 41 38 38 38 38 38	0.9728 <u>Lat</u> 0.9728 0.9753 0.9692 <u>RdGr</u> 59 59 61 59 61 61	0.9809 <u>Lon</u> 0.9809 0.9834 0.9786	0.0153 0.0144 Slope 0.0144 0.0076 0.0062 Solution Diff 3 1 1 3	0.962 0.9736 %Urban 0.9736 0.9716 0.9713 Sprd 22 24 22 24 1	122526562 113388750 IntSect 113388750 116614688 110565000 Brd 19 19 19 19	532912500 <u>Union</u> 532912500 532912500 546778125 514541250 <u>SIRs</u> 38 41 41 41 1	0.2144 0.2128 LeeSalee 0.2128 0.2133 0.2149 RdGr 61 61 61 61	3 24 3 22 3 22 Diff Sprd 1 3 22 3 22 1 22 3 22 Start End Step	19 41 59 19 41 59 BY 41 59 BY 41 59 BY 41 59 19 41 59 19 41 59 19 41 59
Run F Run F Run 10 10 10 112 118 22 177 206 4 8 9 9 14 15	Pop 0.976 0.9794 0.9731 requency in Freq. 4 3 3 2 2 2 2 2 1 1 1 1	Area 0.976 0.9794 0.9731	0.976 Compare 0.976 0.9794 0.9731 Diff 3 3 3 3 1 3 1 3	0.4743 Clusters 0.4743 0.3036 0.0223 Sprd 22 22 22 22 22 22 22 22 22	0.9825 Perimeter 0.9825 0.9822 0.9809 Brd 19 21 19 19 19 21	0.9951 Clst Size 0.9951 0.995 0.9919 SIRS 41 41 41 38 38 38 38 38	0.9728 <u>Lat</u> 0.9728 0.9753 0.9692 <u>RdGr</u> 59 59 61 59 61 61	0.9809 <u>Lon</u> 0.9809 0.9834 0.9786	0.0153 0.0144 Slope 0.0144 0.0076 0.0062 Solution Diff 3 1 1 3	0.962 0.9736 %Urban 0.9736 0.9716 0.9713 Sprd 22 24 22 24 1	122526562 113388750 IntSect 113388750 116614688 110565000 Brd 19 19 19 19	532912500 <u>Union</u> 532912500 532912500 546778125 514541250 <u>SIRs</u> 38 41 41 41 1	0.2144 0.2128 LeeSalee 0.2128 0.2133 0.2149 RdGr 61 61 61 61	3 24 3 22 3 22 Diff Sprd 1 3 22 3 22 1 22 3 22 Start End Step	19 41 59 19 41 59 BY 41 59 BY 41 59 BY 41 59 19 41 59 19 41 59 19 41 59
Run F Run F Run 10 10 12 18 2 17 20 26 4 8 9 14 15 25	Pop 0.976 0.9794 0.9731 (requency in Freq. 4 3 3 2 2 2 2 1 1 1 1	Area 0.976 0.9794 0.9731	0.976 Compare 0.976 0.9794 0.9731 Diff 3 3 3 3 1 3 1 3	0.4743 Clusters 0.4743 0.3036 0.0223 Sprd 22 22 22 22 22 22 22 22 22	0.9825 Perimeter 0.9825 0.9822 0.9809 Brd 19 21 19 19 19 21	0.9951 Clst Size 0.9951 0.995 0.9919 SIRS 41 41 41 38 38 38 38 38	0.9728 <u>Lat</u> 0.9728 0.9753 0.9692 <u>RdGr</u> 59 59 61 59 61 61	0.9809 <u>Lon</u> 0.9809 0.9834 0.9786	0.0153 0.0144 Slope 0.0144 0.0076 0.0062 Solution Diff 3 1 1 3	0.962 0.9736 %Urban 0.9736 0.9716 0.9713 Sprd 22 24 22 24 1	122526562 113388750 IntSect 113388750 116614688 110565000 Brd 19 19 19 19	532912500 <u>Union</u> 532912500 532912500 546778125 514541250 <u>SIRs</u> 38 41 41 41 1	0.2144 0.2128 LeeSalee 0.2128 0.2133 0.2149 RdGr 61 61 61 61	3 24 3 22 3 22 Diff Sprd 1 3 22 3 22 1 22 3 22 Start End Step	19 41 59 19 41 59 BY 41 59 BY 41 59 BY 41 59 19 41 59 19 41 59 19 41 59

		_													
Run 10					Perimeter 0.9825	Clst Size	Lat	<u>Lon</u> 0.9803		%Urban	IntSect 114741562	Union			SIRs RdGr 41 61
7	0.9734	0.9721	0.9734 0.9721	0.2472	0.98	0.9927	0.9691	0.9771	0.0014	0.9634	112913438	517064062	0.2194 0.2184	1 22 21	41 61
22	0.9684	0.9684	0.9684	0.0426	0.98	0.9887	0.9648	0.9748	0.0144	0.9609	117905625	540047812	0.2183	1 24 20 1 ? ?	41 61 41 61
TOP 3 Run	AREA Pop	Area	Compare	Cluetore	Perimeter	Clet Size	l at	Lon	Slope	%Urban	IntSect	Union	LeoSaloo	Diff Sprd Brd	SIRs RdGr
9	0.9771	0.9771	0.9771	0.5444	0.9798	0.9944	0.9735	0.9825	0.0153	0.9711	116254688	549919688	0.2114	3 22 21	41 61
6 15	0.9761 0.976	0.9761 0.976	0.9761 0.976	0.2984	0.9798 0.9762			0.9809	0.01 0.01		114460312 119882812		0.2137 0.2143	3 22 20 3 23 20	41 61 41 61
		0.070	0.070	0.0001	0.0702	0.0002	0.070	0.0010	0.01	0.07 11		000 10 1002	0.2110	3 22 20	41 61
	CLUSTER Pop	Area	Compare	Clusters	Perimeter	Clst Size	Lat	Lon	Slope	%Urban	IntSect	Union	LeeSalee	Diff Sprd Brd	SIRs RdGr
17	0.9733	0.9733	0.9733	0.8992	0.9789	0.9935	0.9699	0.9787	0.0079	0.9594	118184062		0.2145	2 23 21	41 61
13 12	0.9716 0.9757	0.9716 0.9757	0.9716 0.9757		0.9804 0.9813			0.9792 0.9827	0.0065 0.0085		114671250 117475312		0.2149 0.2144	1 23 20 3 23 19	41 61 41 61
7 23 7 41 61 TOP 3 CLUSTER PERIMETER															
	Pop			Clusters	Perimeter	Clst Size	Lat	Lon	Slope	%Urban	IntSect	Union	LeeSalee	Diff Sprd Brd	SIRs RdGr
11 20	0.9749 0.9742	0.9749 0.9742	0.9749 0.9742	0.4418 0	0.989 0.9828			0.9819 0.9791			116592188 120397500		0.2169 0.2155	2 23 19 2 24 19	41 61 41 61
10	0.9742	0.9742	0.9742		0.9825			0.9803			114741562		0.2194	1 23 19	41 61
TOD 2	CLUSTER	617E												2 23 19	41 61
Run		Area	Compare	Clusters	Perimeter			Lon	Slope	%Urban		Union			SIRs RdGr
6 14	0.9761 0.9754	0.9761 0.9754	0.9761 0.9754	0.2984	0.9798 0.9804			0.9809 0.9813	0.01 0.0128		114460312 116865000		0.2137 0.2135	3 22 20 2 23 20	41 61 41 61
18	0.9752	0.9752	0.9752		0.9754		0.9724	0.98			120276562		0.2135		41 61
TOP 3	HORIZONI	AL ALIGNN	IENT											3 23 20	41 61
Run	Pop	Area	Compare		Perimeter	Clst_Size	Lat	Lon	Slope	%Urban		Union			SIRs RdGr
12 11	0.9757	0.9757 0.9749	0.9757 0.9749		0.9813 0.989			0.9827 0.9819			117475312 116592188		0.2144 0.2169	3 23 19 2 23 19	41 61 41 61
9	0.9771	0.9771	0.9771		0.9798			0.9825			116254688		0.2114	3 22 21	41 61
TOP 3	VERTICAL	ALIGNMEN	т											3 23 19	41 61
Run	Pop	Area	Compare		Perimeter			Lon	Slope	%Urban		Union			SIRs RdGr
12 9	0.9757 0.9771	0.9757 0.9771	0.9757 0.9771	0.6969 0.5444	0.9813 0.9798			0.9827 0.9825	0.0085 0.0153		117475312 116254688		0.2144 0.2114	3 23 19 3 22 21	41 61 41 61
11	0.9749	0.9749	0.9749	0.4418	0.989			0.9819	0.0085		116592188		0.2169	2 23 19	41 61
TOP 3	SLOPE													3 23 19	41 61
Run 3	Pop 0.9741	Area 0.9741	0.9741	Clusters 0.5342	Perimeter 0.9778		<u>Lat</u> 0.9706	Lon 0.9797	Slope 0.0163	%Urban	IntSect 114527812	Union 531317013	LeeSalee 0.2156	Diff Sprd Brd S	SIRs RdGr 41 61
9	0.9741	0.9741	0.9741	0.5342	0.9778			0.9797			116254688		0.2136		41 61
20	0.9742	0.9742	0.9742	0	0.9828	0.9938	0.9708	0.9791	0.0149	0.9638	120397500	558703125	0.2155	2 24 19 3 22 19	41 61 41 61
TOP 3	% URBAN													3 22 19	41 61
Run 3	Pop 0.9741	Area 0.9741	0.9741	O.5342	Perimeter 0.9778			Lon 0.9797	Slope 0.0163	%Urban 0.9738	IntSect 114527812	Union 531317812	<u>LeeSalee</u> 0.2156	Diff Sprd Brd 3	SIRs RdGr 41 61
9	0.9771	0.9771	0.9771	0.5444	0.9798	0.9944	0.9735	0.9825	0.0153	0.9711	116254688	549919688	0.2114	3 22 21	41 61
15	0.976	0.976	0.976	0.0631	0.9762	0.9952	0.973	0.9813	0.01	0.9711	119882812	559454062	0.2143	3 23 20 3 22 ?	41 61 41 61
Run F	requency in Freq.	top 3	Diff	Sprd	Brd	SIRs	RdGr		Solution <u>Diff</u>	Sprd	Brd	SIRs	RdGr		
9 11	5 3		3 2	22 23	21 19	41 41	61 61								
12	3		3	23	19	41	61							Start	
3 6	2 2													End	
10	2														
15 20	2													Step	
7	1								#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#### Runs	
13 14	1 1														
17 18	1 1														
22	1														