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Abstract

The concept of human population density is quite simple:
the number of persons occupying a given area. Nonetheless,
practical representations of population densily must use ap-
propriate spatial and temporal scales of measurement to be
useful. The 11 September 2001 attack on the World Trade
Center in New York is a poignant example: “How many peo-
ple were in the two World Trade Center buildings at 0830
local time?” Population density data derived from most-
national censuses is a residential measure of population
density and consequently does not capture non-residential
population density. Human mobility suggests that a non-
residential or ambient measure of population density may
be a more useful representation for some applications. Am-
bient population density in this sense is a temporally aver-
aged measure of population density that takes into account
where people work, sleep, eat, drive, shop, etc. Short of im-
planting a GPS reciever into everyone’s skull and tracking
their spatio-temporal behavior, it is extremely difficult to
make direct measurements of ambient population densily.
This paper explores some theoretical and empirical efforts
at estimating ambient population density and proposes a
quantitative means for evaluating their validity. The three
models of population density examined are LandScan, Grid-
ded Population of the World (GPW), and a simple empirical
model derived from nighttime satellite imagery provided by
the Defense Meteorological Satellite Program’s Operational
Linescan System (DMSP OLS). These measures are compared
to both residential and employment-based measures of pop-
ulation density in the Los Angeles metropolitan area. The
GPW, LandScan, and DMSP OLS models of ambient popula-
tion density described here all make foundational contribu-
tions to future efforts at filling the gap in social, economic,
and demographic information for parts of the world where
such data are unavailable. The proxy measures of popula-
tion density described here show promise for many applica-
tions, including improved mapping of population distribu-
tion and as a supplement to census enumerations in many
parts of the world.

Introduction

Population density is a commonly used characterization of
geographic space at a wide range of scales. Measures of
population density are useful in hazard planning and re-
sponse, environmental impact assessment, transportation
planning, economic decision-making, and numerous other
applications. Useful measures of population density must
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be made at appropriate, application specific, spatial and
temporal scales. Nonetheless, population data are not
always available at the spatial and temporal resolutions
required. This paper explores some empirical and theore-
tical approaches to estimating ambient population density.
Ambient population density is a temporally averaged mea-
sure of population density that incorporates human mobil-
ity. The concept of “ambient population density” was sug-
gested by Dobson et al. (1999] in a paper describing the
production of a global population dataset called LandScan.
Representations of ambient population density may be
more useful for certain applications than are existing tradi-
tional measures of population density.

The concept of population density can be elusive when
one attempts to characterize it across spatial and temporal
scales. One can concievably conduct the following thought
experiment to gain a sense of the complexities associated
with representing population density at varying spatio-
temporal scales: At some fine spatial scale, population den-
sity becomes binary, e.g., one person per unit area (with
perhaps the exception of crowded multi-story buildings). A
binary map of population density at such a scale can be
imagined with dots representing individuals.

A map of this nature is a snapshot in time. Yet people
move. To represent this motion, an animated map of mov-
ing dots could portray a binary scale population density
map through time. Imagine a pixel or a small fixed square
location in this animated map. Sometimes it would contain
a person and have a value of one and other times it would
be empty with value zero. An average value somewhere be-
tween one and zero could be calculated for this pixel or
rectangular space as time progressed through seconds, min-
utes, hours, days, weeks, months, or years. It is quite likely
that this average population density of this cell would be
quite variable over the course of a day or perhaps even a
week, yet at some point in time the average would settle
down and not vary significantly. The time at which the
average population density of this cell or pixel stopped
varying might be an appropriate temporal scale for measur-
ing the ambient population density of this pixel. At this
point it seems appropriate to shift from a pointillist per-
spective to pixellated perspective.

What is the appropriate method to characterize the pop-
ulation density of a pixel in time and space? Would all
pixels at this spatial scale stabilize in population density
over the same period of time? A pixel in a crosswalk at a
busy intersection in a city might reach a stable average pop-
ulation density in the course of a day, yet it might take
weeks or months for a pixel in a conference center to stabi-
lize due to more extreme fluctuations in the flow of people
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* through it. Pixels in a national park might not stabilize until
years have passed due to seasonal variation in the flow of
people through them. In any case, temporal variability is an
issue to account for in conceptions of population density.

The spatial variability of population density also raises
interesting questions. Just as we smoothed the map through
temporal averaging, this map can be smoothed with spatial
averaging. Spatial averaging could be accomplished by in-
creasing the size of the pixels to larger and larger sizes. As
this is done pixels will take on a greater range of values be-
tween zero and some number that is a function of the size of
the pixel. As this smoothing increased and successive repre-
sentations of it were presented to an observer, one would
begin to see both increasing variation in levels of population
density and increasing smoothness of population density.
However, as the scale became increasingly coarse, this
smoothness would begin to disappear and the variability of
the population density would actually decrease. If this exer-
cise were performed on a dataset of the continental United
States and the pixels were as large as typical urban centers,
the map would become almost binary again. The pixels over
urban centers would have large values which varied accord-
ing to the average population density of the urban centers
they represented, and the rest would have slightly varying
low values. In any case, the spatial and temporal variability
of population density presents interesting problems of defin-
ition and measurement. The complexities associated with
human spatio-temporal behavior are beyond the scope of
this paper as are the intractable problems associated with
scale and aggregation. However, the simple empirical inves-
tigations described here may shed light on theoritical, em-
pirical, and practical attempts at measuring and represent-
ing population density using remotely sensed imagery and
geographic information systems.

Data and Methods

The three models of population density used in this study
are the Gridded Population of the World (GPw) - (Tobler

et al., 1997), LandScan (Dobson et al., 2000}, and a model
derived from nighttime satellite imagery provided by the
Defense Meteorological Satellite Program’s Operational
Linescan System (DMSP-OLS) (Sutton 1997; Elvidge et al.,
1998). The datasets used to evaluate these estimates of am-
bient population density were a 1-km? grid of population
density derived from 1990 Census block groups of the con-
terminous United States and a Public Use Micro Station
(PUMS) dataset of employment in the Los Angeles area. A
brief description of these datasets follows.

Gridded Population of the World (GPW): A Single Variable Model

The Gridded Population of the World (GPW) started as The
Global Demography Project, a joint effort of the National
Center for Geographic Information and Analysis (NCGIA),
the Center for International Earth Science Information Net-
work (CIESIN), and Environmental Systems Research Insti-
tute (ESRI)(Tobler, 1995). The Global Demography Project
produced a gridded global representation of the world’s
population circa 1994. Population counts were obtained
from best available first- or second-level sub-national popu-
lation counts (about 16,000 administrative units), extra-
polated to 1994 populations, and interpolated to a 5- by
5-minute grid using a smoothing algorithm developed by
Tobler (1979). This smoothing eliminates arbitrary “steps”
in population density that occur at administrative bound-
aries.It is the only manipulation of the data that has the
potential to capture ambient population density. GPW is es-
sentially a measure of residential rather than ambient pop-
ulation density. GPW is considered a single variable model
because the only information used to derive the values is
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population counts from vector maps derived from official
census figures. In some cases the population count of the
polygons is extrapolated to 1990 or 1995 from the most
recent available census; however, the population counts
are the only information used to produce gridded popula-
tion estimates. LandScan, on the other hand, uses a diverse
assortment of spatial datasets in addition to census data to
produce an estimated global grid of population.

The LandScan Global Population Project: A Multiple Variable Model

The LandScan gridded global population dataset was de-
veloped at Oak Ridge National Laboratories to provide pop-
ulation data of fine enough spatial resolution to be useful
in preparing for and responding to natural and manmade
disasters (Dobson et al., 2000). The cell resolution of Land-
Scan is 1 km? this is 100 times finer a spatial resolution
than GPW. The creators of LandScan coined the phrase
“ambient population density” and explicitly built their
database to reflect ambient as opposed to residential popu-
lation density. LandScan is a multiple variable model in
that it uses many input variables such as roads, topo-
graphic slope, land cover, populated places, nighttime
lights, exclusion areas, urban density factors, and coast-
lines to estimate ambient population density. LandScan is~
spatially interpolated to a finer resolution than the actual
census values by applying many theories about the concen-
tration of people near roads, coastlines, and urban areas.
This borrows from theory about improved population allo-
cation modeling by utilizing appropriate ancillary informa-
tion and the capabilities of geographic information systems
(Landford and Unwin, 1994; Deichmann, 1996). The para-
meters that control the probability models for allocating
population in the LandScan model are spatially variable
(i.e., they can vary from province to province) and empiri-
cally derived. Landscan is similar to GPwW in that it uses
best available population data from polygonal maps that
varied from coarse resolution (state or province level) in
some countries to fine resolution (tract level) in other
countries. LandScan’s cell values aggregate to these poly-
gon values as do the GPW products; however, the spatial
variability of population density within these polygons can
be higher in LandScan because of the use of ancillary data.

Nighttime Satellite Imagery as a Proxy Measure of Ambient Population Density
Another model estimating ambient population density was
derived from a stable nighttime lights dataset developed by
Elvidge et al. {1998). This image is a composite of hun-
dreds of orbits of the DMSP OLS in which the images were
screened for clouds and ephemeral lights such as fires and
gas flares. Another dataset derived from the DMSP OLS data
was a binary image of the urban clusters. This image was
used as a mask for separating urban and rural populations
and as a means of estimating the population of urban clus-
ters (see Sutton ef al. (2001) for a description of how the
imagery was used to estimate the population of all the
urban clusters of the world). The estimate of urban popula-
tion density at each non-zero pixel of the nighttime satel-
lite image is based on the following model:

Estimated Estimated DMSP Low-Gain Pixel Value
Population =[ Cluster X Sum of all DMSP Low-Gain
Density Population PixelValues in Cluster
or
E; = Eg{lgvi/Z(lgv)) (1)

ie Mk
where Igv; is the low-gain value of pixel i, k is the index

of cluster, j and i are the indices of pixels, Ey is the esti-
mated total population of cluster k, E; is the estimated pop-
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ulation density of pixel i, and M, is the pixel membership
of cluster k. A graphical depiction of the above model is
provided in Figure 1. The total cluster population used in
the mode! can be actual values or estimates derived from
linear regressions described in Sutton et al. (2001). This
model only estimates ambient population density in urban
areas, whereas LandScan estimates ambient population den-
sity on all land surfaces.

Data Used for Model Evaluation

The population density standards used for validation of
these models were derived from a grid of population density
created from the block-group administrative boundaries of
the 1990 U.S. census. The square cells in this grid were allo-
cated population density values on a proportional-by-area
basis from the block-group polygons of the TIGER files. These
reference data were manipulated in three ways to capture
human mobility and approximate ambient population den-
sity: (1) spatial aggregation to larger pixels, (2) the use of
mean filters, and (3) the use of both employment and resi-
dence-based population density datasets. The employment-
based population density dataset was derived from PUMS
data for the Los Angeles area.

Manipulations one and two are isotropic, whereas in
reality there will be regionally varying anisotropic mobility
patterns that will influence any accurate representation of
ambient as opposed to residence-based population density
(e.g., the urban periphery moving into downtown cores
during the daytime). The third manipulation simply took
the average of employment- and residence-based measures
of population density. This manipulation is empirical and
captures some of the anisotropic nature of the difference
between residence-based and ambient population density.

Spatial autocorrelation is one attribute of the popula-
tion density dataset that presents problems for developing
accurate models to estimate its high degree of spatial vari-
ability, as shown in a correlogram of the population density
dataset (Figure 2). The figure shows how a one-pixel mis-
registration of a perfect model to the actual dataset will
only result in an R* of 0.74. This problem is mitigated
using spatial aggregation or smoothing with a mean filter.

Spatial aggregation reduces the variability of pixel val-
ues towards their mean. Typically, the pixel values have
high variability at fine resolutions and lower variability at
coarser resolutions; continued aggregation ultimately results
in one average population density for the whole planet.
Smoothing retains the spatial resolution of the dataset but
reduces the variability of the pixels locally (Holloway,

A hypothetical Urban Cluster
consisting of five 1 km” pixels
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Figure 1. Graphical representation of population den-
sity model derived from pDmspP oOLS imagery.
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Figure 2. Spatial autocorrelation of population density
image.

1958). The correlogram for a smoothed population density
dataset does not drop off as sharply as shown in Figure 2.
In this study the ground truth dataset was smoothed using
a 5- by 5-pixel mean filter and an 11- by 11-pixel mean fil-
ter. The justification for mean smoothing is that the census
data records where people are at night. A mean spatial fil-
ter is a method of performing a smoothing that attempts to
capture the reality of people moving from home to office to
store to school. In the United States in 1975 the average
distance commuted from home to work was approximately
9 miles (Long and Boertlein, 1976). Mean filtering is one
means of approximating ambient population density that
results from human mobility.

The use of a smoothing filter serves two purposes.
First, smoothing may produce an image that is more repre-
sentative of ambient population density through time. Sec-
ond, smoothing increases the spatial autocorrelation of the
data, in essence, reducing the steepness of the decays shown
in Figure 2. An area that exemplifies the problem of high
spatial variability of residence-based measures of popula-
tion density is the University of California at Santa Barbara
(ucsB) campus and the nearby student community of Isla
Vista. The census records show UCSB as having a very low
population density, whereas Isla Vista has some of the most
densely populated census tracts west of the Mississippi. A
mean smoothing of the population density image increases
the population density of areas like the ucsB campus, par-
ticularly where they border Isla Vista. In addition, the Isla
Vista community has low population density commercial
districts next to high density residential districts that are
resolved by the census block polygons and the resulting
1-km? grid derived from them. This is a good example of
high spatial variability at the fine scale. The smoothing fil-
ter produces a representation of population density in Isla
Vista that spreads the population more evenly between the
commercial and residential areas in the community.

The model of population density derived from night-
time satellite imagery was evaluated on the 1-km? population
density dataset, and on aggregations of the dataset to pixels
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with 5- and 10-km? sides. The larger pixel images were
simply mean aggregations of the finer resolution image. The
resulting “predictions” of population density were then
compared to both the smoothed and un-smoothed “refer-
ence database” population density.

The third method for evaluating the GPw-, LandScan-,
and Nighttime-Image-based estimates of population density
focused on the Los Angeles metropolitan area. The “refer-
ence database” of ambient population density used for the
Los Angeles metro area was a simple arithmetic average of
the residence-based measure of population density derived
from 1990 census data and an employment-based measure
of population density derived from PUMS data.

Results and Analysis

The urban cluster containing Minneapolis and St. Paul pro-
vides a good visualization of the appearance of these mod-
els and several of the standards to which they were com-
pared (Figure 3). The images in Figure 3 include the un-
smoothed population density derived from the block group
polygons of the 1990 U.S. census, the 5- by 5-pixel and 11-
by 11-pixel mean filtered versions of those data, the model
derived from the DMSP OLS imagery, and the 5- by 5-minute
global demography project. Because the models derived
from the DMSP OLS nighttime imagery are only produced
over urban areas, the results reported in Table 1 are limited
to lit areas in the DMSP OLS imagery. By focusing on these
pixels, we analyze the 10 percent of the land which con-
tains almost 80 percent of the people. The continental
United States had 5,881 urban clusters with an average pop-
ulation of 32,952, This represents 193.8 million of 239.4
million in the dataset for 1990, equal to 79 percent of the
total population. As an estimate of urban population, it is
4 percent off the Population Reference Bureau’s value of 75
percent (Haub and Cornelius, 1998). The models were com-
pared at 1-, 5-, and 11-km® resolutions {length of pixel edge).

Table 1 summarizes the comparisons of the GPW and
DMSP OLS models of population density to both the spa-
tially aggregated and smoothed standards. The standards
are the 1-km® measure of population density derived from
the 1990 U.S. census block group polygons and the 5 by 5 mean
filter smoothed version of that dataset. The DMSP model es-
timates outperformed the global demography project esti-
mates in almost every category at all scales, including the
scale of the global demography project data.

A visualization of the spatial distribution and magni-
tude of the errors of these models does shed some light on
the limitations of these representations of population den-
sity. Both the smoothed and aggregated standards to which
the GPW and DMSP OLS estimates were compared did not in-
clude empirical information about where people work, shop,

1 i
Global Demography Projeet (10.4 km2)
Smosothed from county level data

-

Actual Population Density from Census
Block Group Felygons (1 km 2)

T e

Mudcl of Population Density Derived
from DMSP OLS nightiime imagery

Smosthed version of Actual Population
Density Produced with 2 535 km mean filter

Scale: Population Density (Persons/Kin2)
0 - 50
51 - 100
101 - 250
251 - 500
501 - 1,000
1,001 - 2,000
2,001 - 5,000
5,001 -10,000
Over 10,000

Smoothed version of Actual Population
Density Produced with a 11x11 lin mean filter

Figure 3. Representation of the population density of
Minneapolis-St.Paul from various versions of datasets
described in this paper.

travel, etc. Plate 1 is an image of the errors of the DMSP OLS
nighttime image-based model compared to the unsmoothed
population density standard in the Los Angeles area. The er-
rors manifest from spatial mis-allocations of population den-
sity. Overestimates (blue) happen in well-lit areas that have
low population densities according to the census data. Un-
derestimates (red) occur in high population density central
business districts.

Many of the errors are clearly interpretable. For exam-
ple, the population density of urban centers is typically

TasLE 1. COMPARISONS OF GPW AND DMSP OLS MoDELS TO STANDARDS FOR ALL U.S. URBAN AREAS

GDP = Global Demography Project

Standard: Actual Population Density (No Smoothing)

DMSP = Model From Nighttime Imagery

Pixel Size: 1.0 km

Pixel Size: 5.0 km Pixel Size: 10.4 km

GDP vs. DMSP vs. GDP vs. DMSP vs. GDP vs. DMSP vs.
Figures from Linear Regression Standard Standard Standard Standard Standard Standard
R? 0.05 0.318 0.13 0.414 0.168 0.52
Mean Error 120.3 —60.7 119.1 —0.75 92 —106.6

GDP = Global Demography Project

Standard: Smoothed Pop. Den. (5 X 5 km Mean Filter)

DMSP = Model From Nighttime Imagery

Pixel Size: 1.0 Km

Pixel Size: 5.0 km Pixel Size: 10.4 km

GDP vs. DMSP vs. GDP vs. DMSP vs. GDP vs. DMSP vs.
Figures from Linear Regression Standard Standard Standard Standard Standard Standard
R? 0.11 0.49 0.43 0.49 0.14 0.54
Mean Error 116.6 —64.3 52.2 —85.7 33.46 —92.5
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underestimated. These areas tend to be well lit in the
image; however, the linear proportion of population allo-
cated to these areas based on light intensity is insufficient
to account for the true population density. These errors
could be mitigated with the use of a non-linear allocation
of population density (Sutton, 1997); however, this would
increase the existing errors of overestimation. The two
large airports in the cluster are significant overestimates.
The area around the Los Angeles International Airport
(LAX) shows up as a large error of overestimation of popu-
lation density. LAX is one of the largest employers in the
city and tens of thousands of people fly in, out, or through
that airport on a daily basis. yet the area has a relatively
low population density according to the residence-based
data derived from the census. The same is true of Ontario
International Airport.

The interpretable and spatially non-random nature of
these errors suggests that the smoothing and aggregation
manipulations of the residence-based standard of popula-
tion density are inadequate measures of the ambient popu-
lation density that these models are trying to capture. The-
oretically, a better standard of ambient population density
could be derived from the temporally averaged spatial
behavior of all persons present (residents and visitors) in
the Los Angeles area for that given time. The financial
and practical obstacles to obtaining such a dataset are
presently insurmountable; however, an improved standard
of ambient population density was derived from a combi-
nation of the 1990 residence-based measure of population
density and a 1990 employment-based measure derived
from PUMS data.

Spatial aggregation and mean filtering are somewhat
ad hoc attempts at producing an ambient population den-
sity standard from a residence-based measure of population
density. They are isotropic in nature, and knowledge of
human spatial behavior tells us that ambient population
density cannot be derived from an isotropic manipulation
of residence-based population density. The final standard
of ambient population density was derived by simply
averaging a residence-based measure and an employment-
based measure of population density for the Los Angeles
area. This manipulation incorporates additional empirical
data and consequently captures some of the anisotropic na-
ture of the difference between residence-based population
density and ambient population density.

The estimate of ambient population density derived
from the DMSP OLS nighttime imagery was the only estimate
whose correlation with the standard derived from both
residence- and employment-based data was higher than its
correlation with either the residence- or employment based
measure alone. Plate 2 summarizes the comparisons of
the DMSP OLS derived model and the residence- and employ-
ment-based standards in the Los Angeles area. It is inter-
esting to note that the spatial pattern of error in Plate 2 is
more random than the error derived from just the residence-
based measure shown in Plate 1.

An interesting statistical question to ask is: ‘What is
the expected value of the correlation between dataset A
and the mean of datasets B & C?’ A naive guess might be
that Correlation(A, ¥z B + %2 C) would simply be the mean
of Correlation(A, B) and Correlation(A, C). This is not the
case. The actual expected value is given by

COR(A, Y2 B + Y2 C) =(0,%/0n,+2)*COR(A,B)
+ (U(:Z/UIJ+(:2)* COR(A,C) (2)
+ 2C0ov{A,B)Cov(A,C)/ (o, oy )

For a derivation of Equation 2, see Appendix A. A correla-
tion analysis of the DMSP OLS, GPW, and LandScan models
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with the residence- and employment-based standards of
population density in the Los Angeles metro area was con-
ducted to assess the accuracy of these three representations
of ambient population density (Figure 4 and Tables 2 and 3).
The ¢PW and DMSP OLS models had the strongest correla-
tions with the ambient standard of population density de-
rived from the mean of the residence- and employment-
based measures of population density. GPW had the highest
correlation with the residence-based measure and the DMSP
oLs model had the highest correlation with the employ-
ment-based measure. The DMSP OLS model was the only
model whose correlation with the ambient standard was
higher than its correlation with either the residence- or em-
ployment-based standard alone. The DMSP OLS model also
had the largest difference between the expected value of its
correlation with the ambient standard (as calculated from
Equation 2) and its observed value. Although it should be
noted that each of the models (GPW, DMSP OLS, and Land-
Scan) had correlations with the ambient standard that were
significantly higher than their expected value.

Discussion
Most existing measures of population density are derived
from the arbitrary spatial units of a national census and
represent residential population density. The temporal
quality of these measures are twofold in the sense that they
probably best measure a nighttime population density, and
the repeat cycle of the measurement is determined by the
frequency of the census. While this is a legitimate and use-
ful measure of population density, there are several draw-
backs to this measure that the models described here can
mitigate. Some of the advantages of the GPW-, LandScan-,
and DMSP OLS-based measures of population density are
(1) uniform spatial units that meet needs for studies of the
human dimensions of global change, (2) a temporally aver-
aged measure of population density based on human mo-
bility, and (3) variants of these models that can provide
global coverage on a more frequent repeat cycle (~1 year).
The three representations of population density de-
scribed here—GPw, LandScan, and the DMSP OLS-based
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Figure 4. Scatterplots of correlation analysis.
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cluster.

Plate 1. Image of the error (actual minus predicted) for the Los Angeles urban

model—have different strengths. GPW and LandScan both
cover rural and urban areas whereas the DMSP OLS model is
only developed for urban areas. The spatial resolutions of
the DMsP OLS and LandScan are finer that that of GPw. cpw
is in essence a re-representation of existing census data,

whereas LandScan is essentially a manipulation of Gpw
that increases the spatial variability and resolution of the
data and attempts to capture ambient as opposed to resi-
dence-based population density. On the other hand, the
DMSP OLS model uses only one variable and can be imple-

Residential Population Density of Los Ang
Urban Cluster from 1990 U.S. Cens

Urban ]

| Representation of 'Low-Gain' DMSP OLS
I Light Intensity over Los Angeles Urban Cluster

Elploymcnt based Population Density of L. A.
ter from 1990 PUMS data

a linear regr
DMSP image on Average of Residential and
Employment based pepulation density

Average of Residential and Employment based
Population Density of L.A. Urban Cluster

Correlations and Mean
Absolute Deviations (MAD)

DMSP OLS Light Intensity vs.
Residential Population Density

R’=0.50 MAD =721

DMSP OLS Light Intensity vs.
LEmployment Population Density
R'=0.32 MAD =496

DMSP OLS Light Intensity vs.
Average of Residential and Employment

R*=0.57 MAD =490

on of Low-Gain'

employment-based measures of population density.

Plate 2. Comparisons of pbMsp oLs based image of nighttime light intensity over Los Angeles to residential- and
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TABLE 2.

CORRELATION MATRIX OF MODELS AND STANDARDS

Correlation (R) Matrix of Models and Standards

Variable DMSP OLS LandScan GPW Residence Employment Ambient
DMSP OLS 1.00 0.58 0.76 0.72 0.57 0.76
LandScan 0.58 1.00 0.71 0.80 0.30 0.66
GPW 0.76 0.71 1.00 0.86 0.42 0.76
Residence 0.72 0.80 0.86 1.00 0.43 0.85
Employment 0.57 0.30 0.42 0.43 1.00 0.84
Ambient 0.76 0.66 0.76 0.85 0.84 1.00
TABLE 3. EXPECTED AND OBSERVED VALUES OF R% AND PARAMETERS NECESSARY FOR CALCULATION
Expected Value Observed Value

R%pisp 0L, Ambient 0.29 R%puse oL, Ambient 0.58

LandScan, Ambient 0.26 R LandScan, Ambient 0.43
RZC}PW, Ambient 0.33 RZCPW, Ambient 0.58
OZDMSP OLS 1273839 COV(DMSP OLS, ReSideHCe} 0.00000044 RZDMSP OLS, Residence G.51
21 amdScan 2370984 Cov(DMSP OLS, Employment) 0.00000030 R%puise oL, Bmployment 0.32
Zorw 2217829 Cov(LandScan, Residence) 0.00000034 LandScan, Residence 0.64
U?Residgncc 2890000 Cov(LandScan, Employment) 0.00000025 R%1 indscan, Bmployment 0.09
0 Employment 2685701 Cov(Gpw, Residence) 0.00000037 GPW, Residence 0.74
0% Ambient 1993744 Cov(GPw, Employment) 0.00000027 R2Gpw, Bmployment 0.18

mented as an independent estimate of population and pop-
ulation density.

Recognition of the relative strengths and weaknesses of
these models allows for their continued independent im-
provement and for potential synergy among them. Popula-
tion density data is one of the fundamental datasets to
which additional social, demographic, and economic data
can be attached. Environmental data in uniform global cov-
erage are increasing in quality, quantity, and usability;
however; social, economic, and demographic data do not
always lend themselves to immediate integration with
these environmental datasets. Despite the great deal of im-
portant socio-economic and demographic data that are
being collected, the incommensurate spatial units, report-
ing methods, and spatial and temporal scales of the infor-
mation leave many analyses un-performable. In fact, sev-
eral organizations and institutions have determined that
socio-economic data at spatial and temporal scales com-
mensurate with existing environmental data are the most
significant need for investigating the human dimensions of
global change (Clark and Rhind, 1992). Synergy between
GPW-, LandScan-, and DMSP OLS-based models can serve as
a vehicle for addressing this significant data gap.

GPW should remain as a gridded representation of de-
mographic data derived from the “clean,” “best estimate”
administrative boundaries of official, nationally reported
figures at the finest spatial resolution available. GPW could
serve as part of the data framework for the development of
a United Nations Geographic Database that is currently
being discussed (United Nations, 2000). Ideally, this effort
will focus on filling the gap in the areas of social, eco-
nomic, and demographic information, particularly in devel-
oping countries.

LandScan is fundamentally derived from digital satel-
lite imagery and cartographic products that are of finer spa-
tial and temporal resolution than are traditional census
data, This cartographic and remotely sensed information is
cheaper to obtain and easier to process than are traditional
census data. Theory needed to convert these data into esti-
mates of additional social, economic, behavioral, and de-
mographic attributes other than population density is pro-
gressing rapidly.
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The DMSP OLS imagery is an excellent case in point.
Global DMSP OLS imagery is being used to produce fine spa-
tial resolution maps of human settlements (Elvidge et al.,
1997a), map urban extent nationally (Imhoff et al. 1997),
estimate urban populations nationally (Sutton et al., 2001),
and serve as a proxy measure of economic activity, energy
consumption, and CO, emissions (Elvidge et al., 1997; Doll
et al., 2000). This research demonstrates the potential of
the DMSP OLS imagery as a proxy measure of ambient popu-
lation density. The potential of these proxy measures of so-
cial, economic, and demographic information is only just
being exploited.

Conclusion

There are many potential benefits provided by a greater un-
derstanding of the relationship between remotely sensed
imagery and ground-based measures of socio-economic and
demographic information. Many countries of the world
lack the finaneial and/or institutional resources to conduct
useful censuses. Models derived from readily available
satellite imagery that have been validated in parts of the
world where good ground based information is available
could serve as reasonable proxy measures in countries that
lack such information. In addition, if a country has some
limited resources with which to conduct an incomplete
census of its population, existing imagery for that country
could be used to help design statistical sampling strategies
for a limited census. These sampling strategies could be de-
signed to maximize the effectiveness and accuracy of proxy
measures derived from satellite imagery. These methods
could also be used to provide inter-censal estimates. This
symbiosis allows for and benefits from independence of
ground and imagery based measures.

These proxy measures of socio-economic and demo-
graphic information provided by remotely sensed imagery
are easily incorporated into a myriad of environmental
analyses such as global warming, deforestation, loss of bio-
diversity, etc. The finer spatial and temporal resolution
of these proxy measures of population will be useful in
many studies for planning, mitigation, and response to nat-
ural and anthropogenic disasters. If these kinds of models
are developed and maintained over time, the time series
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data could be used for validation of urban growth models,
planning for habitat preservation, and informing “smart
growth” initiatives. Establishing models that estimate socio-
econo-demographic information from remotely sensed im-
agery also has the potential to increase cooperation among
nations and between those cooperating nations and the
United Nations.

The GPW, LandScan, and DMSP OLS models of ambient
population density described here all make foundational
contributions to future efforts at filling the gap in social,
economic, and demographic information for parts of the
world where such data are unavailable. GPw led the way by
providing global coverage of residence-based population
density information in a format that is easily incorporated
into grid- or raster-based environmental models. LandScan
switched gears by moving to a representation of ambient
population density by incorporating additional finer spatial
resolution digital information such as roads, topography,
and nighttime satellite imagery to allocate population den-
sity to that finer spatial resolution. LandScan is probably
the best global representation of rural and urban popula-
tion density available today. The model of ambient popula-
tion density derived from the DMSP OLS imagery is perhaps
the best representation of ambient population density in
urban areas at the spatial resolution of LandScan. The
DMSP OLS imagery has also been used to estimate other phe-
nomena such as GDP, CO, emissions, and urban extent. In
the future we believe that synergy between these three
models will allow for development of methods to indepen-
dently estimate other hard to obtain social, economic, and
demographic information.

Acknowledgments

This research was supported in part by the department of
Geography at the University of Denver and an NSF grant
(#CMs-9817761, An integrated Modeling Environment for
Urban Change Research). All support is gratefully acknowl-
edged. Constructive criticism from various anonymous peer
reviewers is thankfully acknowledged. We would also like
to thank Michael Goodchild and Waldo Tobler for helpful
comments on the manuscript in its earlier stages.

References

Clark, J., and D. Rhind, 1992. Population Data and Global Environ-
mental Changes, International Social Science Council, Pro-
gramme on Human Dimensions of Global Environmental
Change, UNESCO, Paris, France.

Deichmann, U., 1996. A Review of Spatial Population Database
Design and Modeling, National Center for Geographic Informa-
tion and Analysis, University of California at Santa Barbara,
Santa Barbara, California, 58 p.

Dobson, J.E., E.A. Bright, P.R. Coleman, R.C. Durfee, and B.A. Wor-
ley, 2000. LandScan: A global population database for estimat-

552 May 2003

ing populations at risk, Photogrammetric Engineering & Re-
mote Sensing, 66(7):849-857.

Doll, C.N.H., J.-P. Muller, and C.D. Elbidge, 2000. Night-time im-
agery as a tool for global mapping of socio-economic parame-
ters and greenhouse gas emisssions, Ambio, 29(3):159-164.

Elvidge, C., K. Baugh, E. Kihn, H. Kroehl, E. Davis, and C. Davis,
1997a. Relationship between satellite observed visible-near in-
frared emissions, population, economic activity, and electric
power consumption, International Journal of Remote Sensing,
18:1373-1379.

Elvidge, C.D., K.E. Baugh, V.H. Hobson, E.A. Kihn, H.W. Kroghl,
E.R. Davis, and C. Davis, 1997b. Satellite inventory of human
settlements using nocturnal radiation emissions: A contribu-
tion for the global toolchest, Global Change Biology,
3:387-395.

Elvidge, C.D., K.E. Baugh, J.B. Dietz, T. Bland, P.C. Sutton, and
H.W. Kroehl 1998. Radiance Calibration of dmsp-ols low-light
imaging data of human settlements, Remote Sensing of Envi-
ronment, 68:77-88.

Haub, C., and D. Cornelius, 1998. World Population Data Sheet,
Population Reference Bureau, Washington, D.C.

Holloway, L.]., Jr., 1958. Smoothing and filtering of time series and
space fields, Advances in Geophysics, 4, 351-389

Imhoff, M.L., W.T. Lawrence, C.D. Elvidge, T. Paul, E. Levine, and
M.V. Privalsky, 1997. Using nighttime DMSP/OLS images of
city lights to estimate the impact of urban land use on soil re-
sources in the United States, Remote Sensing of Environment,
59(1):105-117.

Landford, M., and D.J. Unwin, 1994. Generating and mapping pop-
ulation density surfaces within a geographical information sys-
tem, The Cartographic journal, 31(June):21-25.

Long, L.H., and C.G. Boertlein, 1976. The Geographical Mobility of
Americans: An International Comparison, Bureau of the Cen-
sus, Washington, D.C., 85 p.

Sutton, P., 1997. Modeling Population Density with Nighttime
Satellite Imagery and GIS, Computers, Environment , and
Urban Systems, 21(3/4):227~244,

Sutton, P.C., D. Roberts, C.D. Elvidge, and K. Baugh, 2001. Census
fromhHeaven: An estimate of the global population using
nighttime satellite imagery, Infernational Journal of Remote
Sensing, 22(16):3061~3076.

Tobler, W., 1979. Smooth pycnophylactic interpolation for geo-
graphic regions, Journal of the American Statistical Associa-
tion, 74{367):519-536.

Tobler, W.R., U. Deichmann, J. Gottsegen, and K. Malloy, 1995.
The Global Demography Project, National Center for Geo-
graphic Information and Analysis, University of California at
Santa Barbara, Santa Barbara, California, 75 p.

———, 1997. World population in a grid of spherical quadrilater-
als, International Journal of Population Geography, 3:203— 225.

United Nations, 2000. Cartography and Geographic Information
Science, United Nations, New York, N.Y., 53 p.

(Received 23 October 2001; accepted 23 May 2002; revised 12 July
2002)

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING




&

/

Appendix A—Derivation of Equation 2

COR(A, % B + % C) = (0%/05+¢2)*COR(A,B) + (0¢*/ g + &) *COR(A,C) + 2Cov(A,B)Cov(A,C)/(04**op 1. c%)

COR(A,B) = R% 5

COR (A, Y2 B + Y5 C) = [Cov(A, Y2 B + Y2 C)?/(0°A)(0% /.8 + v2c) (by definition)

_ YalCov(A, B)I* + 1/4[cov(A C)]2
(6%)[1/4 0% + 1/4 o*¢

+ 1/3[Cov(A,B)Cov(A,C)]
+ /5 Cov(B,C)]

[Cov(A,B)I? + [Cov(A,C)) + 2[Cov(A,B)Cov(A,C)]

oA lo% + o?c + 2Cov(B,C)]

_ [Cov(A,B)]? + [Cov(A,C)}* + 2[Cov(A,B)Cov(A,C)]

2 2
TAOB+C

COR(A, LB+ 4L Q) = (op*/op +C2)*R2A,B + (o’ /oy LY AR o 2Cov(A,B)Cov(A,C)/ (62" *og )

To Calculate COR(A, 2 B + Y2 C), the following must be known:

1) pap Or p°ap = R%yp = COR(A,B) 5) 0’pic = 4% 0Ppicr
2) pac Or pPac = R%*y ¢c= COR(A,C) 6) o’
3) Cov(A,B) = ppp-0a-0p 7) oy
4) GCov(A,C) = pacr oa-0¢ 8) o
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