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ABSTRACT. Night-time satellite imagery, as provided by the Defense Meteor- 
ological Satellite Program's Operational Linescan System (DMSP OLS), 
shows promise as a proxy measurement of urban extent. Earlier efforts have 
shown that the areas of contiguous saturated DMSP OLS images show strong 
correlations with the total population living in those areas. This paper describes 
efforts at modeling the population density within the urban areas identified within 
the continental United States. These efforts build upon the previous efforts of 
Clark, Berry, NorcPoeck, Tobler and others to describe the variation of 
population density within cities. The method described herein differs from the 
aforementioned theories because it operates from the edges of the urban areas 
rather than attempting to identify a "center" of the urban cluster. By measuring 
distance from the edge rather than the distance from the center this method 
allows for the "multiple nuclei" of urbun clustering that have clearly manifested 
as a result of the conurbation of urban centers within the U.S.A. This paper 
describes the methods used to allocate population to one, two, three, five, and ten 
square kilometer pixeis for the continental U.S.A. Several urban population 
decay functions are applied and evaluated. In addition, an empirical urban 
population density decay function is derived for all the urban clusters defined by 
the DMSP imagery. © 1998 Elsevier Science Ltd. All rights reserved 

INTRODUCTION 

The growth in human population has profound social, economic, and environmental 
consequences. The urbanization of the world's landsurface is one facet of population 
growth that may have deleterious economic and environmental impacts. Identifying and 
anticipating the location, size, and growth rate of the urbanized areas of the planet 
promises to be an important component of understanding, adapting t o ,  and possibly 
mitigating many facets of global change. While urbanized landcover presently only 
accounts for about 6% of the world's land area, this proportion is growing (Meyer, 1996). 
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Furthermore, in terms of human population, urban areas are growing both in total and 
percentage terms and now account for over 50% of the human beings on the planet. 
Increased global urbanization may significantly alter local to regional climates while 
contributing directly to increased emissions of greenhouse gassvs, land degradation, and 
the loss of productive cropland (Berry, 1990). Accurate data on the spatial distribution of 
human population is critical in addressing the causes and impacts of global environmental 
change. High quality data on the size and distribution of the human population over the 
whole planet is critical in order to monitor, understand, respond to, and perhaps even 
prevent environmental degradation, loss of biodiversity, and resource depletion in many 
parts of the world. Fine resolution population density data has been used to measure 
changes in land-use patterns within the United States (Hitt, 1994). An increased 
understanding of how the density and distribution of human population varies within 
and between urban areas could contribute to the development of improved ability to 
monitor and predict the distribution of the human population. 

This work utilizes the U.S.A. as a regional study in order to inform further studies in 
other parts of the world. Identifying relationships between the total population of 
urbanized areas and the size of urbanized areas using information such as gross domestic 
product (GDP) per capita, most common means of transportation, distribution of wealth 
characteristics, and energy consumption per capita could prove useful in predicting future 
rates of urbanization. This work may be effectively incorporated into dynamic historical 
models of human transformation processes such as urbanization described by Acevedo, 
Foresman, and Buchanan (1996). 

Two aspects of urbanization arc very important with respect to land-use and land-cover 
change. First, most urbanization is unidirectional, culminating in the virtually permanent 
conversion of productive agricultural land into settlements (Meyer, 1996). Urbanization as 
a threat to agricultural lands has been demonstrated using DMSP imagery in the U.S.A. 
(Imhoff & Lawrence, 1997). Second, most of the urban population of the planet live in 
under-developed nations that are striving for increased economic development and 
technological progress. Historically, the cities of the developed countries have gone 
through a process of counter-urbanization in which the size of urban areas has spread 
dramatically (Keyfitz, 1990). China is notable as a country in which the parallel 
demographic, economic, and environmental developments it is undergoing are likely to 
have substantial global repercussions. China represents about one-fifth of the world's 
population and its economy has been growing at staggering rates for over ten years. 
China's cities have higher population densities than the U.S.A.; however, if their growing 
wealth changes the nature of urbanization in China we may be seeing unprecedented rates 
of urbanization that consume agricultural lands that are vital to world food supplies 
(Brown, 1995). If the cities of the developing world continue to follow historical patterns of 
urban growth, we are certain to see unprecedented changes in land usefland cover that will 
undoubtedly have profound impacts on cropland and the environment. 

This paper describes a means of modeling human population density within urban 
clusters as defined by the Defense Meteorological Satellite Program's Operational 
Linescan System (DMSP OLS) night-time satellite imagery. The ground truth for 
measuring the accuracy of these models was a 1 km 2 resolution grid of the population 
density derived from the 1990 U.S. decennial census. The urban density models used were 
parameterized with only two pieces of information: (a) the size and shape of the urban 
clusters defined by the DMSP OLS imagery and (b) a log-log relationship between the size 
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of an urban cluster and its total population that is described in a another paper (Sutton, 
Roberts, Elvidge, & Meij, 1997). 

METHODS 

The datasets used to perform these analyses were continental coverages of the U.S.A. at 
a resolution of one square kilometer. The DMSP OLS data is a stable city lights image 
produced by Elvidge, Baugh, Kihn, and Davis (1995). This image used 232 orbits of the 
DMSP OLS data archives. The use of multiple orbits was needed in order to obtain a 
composite image of stable light sources. Clouds, lightning, and the phase of the moon 
among other things can cause significant variation in DMSP OLS imagery from one orbit 
to the next. The second dataset was an image or "grid" of the continental U.S. population 
density derived from 1990 census data at the block group administrative boundary level 
(see Figure 1). The grid was derived from the block group layer of the Bureau of the 
Census' Topologically Integrated G-eo-referenced and Encoded Referencing System 
(TIGER), and proportionally allocated to 1 km 2 cells. This dataset was developed by 
the Socioeconomic Data and Applications Center (SEDAC) at CIESIN (Meij, 1995). It 
should be noted that this dataset was used only as a reference for the models developed 
from the DMSP OLS dataset. Previous analyses showed that the saturated DMSP pixels 
capture over 80% of the population on only 10% of the land; however, these efforts did 
not reallocate population density back to the one square kilometer pixel (Sutton et al., 
1997). The earlier effort verified the DMSP OLS data as a feasible method for determining 
the areal extent of urban areas. It showed that these urban areas showed a strong 
relationship with their corresponding total populations. This relationship is very similar to 
the works of Clark, Stewart, and Welch (Clark, 1951; Stewart & Warntz, 1958; Welch, 
1980). The methods described here explain various means of disaggregating the total city 
population back to the one square kilometer pixel that make up the city cluster. 

The methods adopted involve taking advantage of the spatial nature of the DMSP data. 
The DMSP image used was simply a binary image with saturated values and dark values 
(see insets of Figure 2). The saturated pixels of the DMSP OLS image were grouped into 
urban clusters based on their adjacency to other saturated pixels (Figure 2). Each saturated 
pixel in the DMSP OLS image was classed based on both a number uniquely identifying 
the cluster to which it belonged and a number representing the distance of that pixel to the 
edge of the cluster to which it belonged. This resulted in over 5,000 distinct clusters. The 
distance is defined as the shortest distance from the pixel in question to a non-saturated or 
dark pixel. One additional manipulation was incorporated to account for coastal and 
border cities. This was done to account for the fact that the densest parts of cities such as 
Chicago, Los Angeles, etc. are often right on the coast. Consequently the pixels of the 
ocean, lakes, and Mexican and Canadian borders were treated as if they were saturated 
pixels. This resulted in coastal and border cities having the highest distances to the edge on 
the center of their coastal or border contacts (Figure 3 shows the distribution of distance 
values, and data structure for three fictitious clusters of different shape but equal area, 
including a coastline cluster). 

The following is a description of how the grid with cluster identification information is 
combined with the distance to the edge of cluster grid. The data structure of Grids in Arc/ 
INFO includes a table called the value attribute table (VAT) which contains two items: a 
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VALUE and a COUNT. The value represents the value assigned to the pixel or cell. The 
count is the number of  pixels that have that particular value. In order to produce a grid 
that incorporated both the distance to edge information and cluster identification, the 
following manipulation was performed. 

First, the grid which had unique values for each of the clusters (which had a VAT whose 
COUNT represented the area of  each urban cluster in square kilometers) was multiplied by 
a thousand. This would result in cluster number 1 becoming cluster number 1,000. The 
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Ln(Cluster population) = 3.353 + 1.3$9*Ln(Cluster Area). 
It is worth noting that the L.A. cluster had the largest absolute error of all the clusters in this study. 

FIGURE 2. DMSP O1~  nlght-time satellite image showing saturated pixels in nominal colors 
iden/ffying adjacent pixels which form urban clusters. 

distance to edge grid was multiplied by ten and truncated to integers. This resulted in each 
pixel having values that represented their distance to dark continental U.S. land in tenths 
of kilometers. At this point, however, a pixel on the edge of the New York cluster is the 
same as a pixel on the edge of any other urban cluster including the Los Angeles, Phoenix, 
and Tucumcari dusters. The values of  all these pixels are less than 100 kin; consequently, 
adding the cluster ID grid to the distance to edge grid results in a grid in which each pixel 
has a value in which the numbers from 0 to 999 represent the pixel's distance to the edge of 
its cluster, and the numbers from one thousand and up represent a number that uniquely 
identifies the cluster in which that pixel occurs (e.g., the pixels on the edge of  duster 
number 1 have values of 1010 (10 being the smallest distance value)). The VAT table that 



232 P. Sutton 

Maps of Sample Urban Clusters[ 
(Values in cells represent distsnces to edge) [ 

~ L  
' ° '  

Distribution 
of Distance 

Values 

16 @ 1.0 km 

4 @ 1.4 km 

4 @ 2.0 km 

4 @ 2.2 km 

1 @ 3.2 km 

29 - Total Area 

Value Attribute Table of [ 
Sam of C~tK I~!000 md Dig 2 Edlle I 
VJ~Ug COUMT 

11010 16 

11014 4 

11020 4 

11022 4 

11032 1 

VALOE COUNT 

309010 19 

309014 6 

309020 2 

309022 2 

Cluster #11 
(FairlyRoundinShspe) 

10 2( 10 

1~I, 2~2:. 1o 1oL, 
l ,  ~o 1,  10110 

19 @ 1.0 km 

6 @ 1.4 km 

2 @ 2.0 km 

2 @ 2.2 Pan 

29 = Total Area 

I Cluster #309 
Orm~y Shaped) 

[~1o 

Ocean 

Land 

22 12 lo lo L 
28122 20 14 ;10 

2 Le 2°'z~ 
30 20 10 

[ Clnstco-eery ]-~1 J 

11 @ 1,0 km 

4 @ 1.4 km 

4 @ 2.0 km 

3 @ 2.2 km 

2 @ 2.8 kJn 

1 @ 3.0 km 

2 @ 3.2 km 

1 @ 3.6 km 

1 @ 4.0 km 

29 ffi Total Area 

VALUE COUNT 

711 010 11 

711 014 4 

711 020 4 

711 022 3 

711 028 2 

711 030 1 

711 032 2 

711 036 1 

711 040 1 

FIGURE 3. Three sample urban elugers of equal area with VAT structure. 

Grid produces conveniently supplies the number of unique occurrences of each value. 
Thus, the VAT table for this grid has values which contain both the distance to edge 
information and count information that indicates the number of pixels that are a distance 
"x" from the edge of "Cluster Y" (Figure 3). 
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The question then becomes: How does one apply the traditional models based on a 

circular city to the irregularly shaped clusters identified from the DMSP night-time satellite 
imagery? The next stage of this analysis involves the manipulation of the VAT for the grid 
just described. The manipulation involves adding new columns to the table which are used 
to model the population density within each cluster according to any integrable function 
describing the decay of population density from an urban center. However, this model 
turns the distance function around and uses distance from the edge of an urban center 
instead. None the less, the decay functions used will be the traditional functions proposed 
describing population density as a function of distance from the urban center. 

The way this was done was via manipulation of the VALUE and COUNT items of the 
VAT for this grid. A simple program was written that calculated the following: (a) cluster 
ID, (b) cluster area, (c) radius of equivalent circle, (d) total population of cluster, (e) upper 
limit of integration for equivalent circle at distance "D", (f) lower limit of integration for 
equivalent circle at distance "D", and (g) population density estimate. Most of these values 
can be found for the clusters shown in Figure 3 in the table at the bottom of Figure 5. This 
table has population density estimates for all of the urban decay functions described in 
Figure 4. Cluster ID was obtained simply by dividing by 1,000 and truncating. Cluster area 
was obtained by summing the count values by cluster ID. The radius of equivalent circle 
was obtained by simply solving the equation: cluster area=~ x(R) 2 for R. Total 
population of cluster was obtained by using the formula obtained from previous work 
describing the linear relationship between the natural log of the population of urban areas 
and the natural log of the area of those clusters: total population of cluster= 
exp[3.359 + 1.359(cluster area)] Sutton et al., 1997). The R-square for the weighted linear 
regression of this log-log relationship is 0.97. The limits of integration warrant further 
explanation. It is important to know that the VAT file is sorted in ascending order. The 
limits of  integration are calculated in the following manner. The urban population density 
functions all begin at a distance of 0 and end at a distance of 1, with the highest or central 
population densities at 0 (Figure 4 describes the urban decay functions used). The limits of 
integration are merely the radii of circles nested inside a circle of radius 1. An example is 
provided both here and in more graphic detail in Figures 4 and 5. Suppose a cluster has 
100 one square kilometer pixels in it, 35 of these pixels are on the outer edge of this cluster 
with a distance value of 1 km from the edge. The upper limit of integration for these pixels 
would be 1.0 and the lower limit of integration for these pixels would be the radius of a 
circle that contained 65% of the area of the unit circle (65% comes from 100 total - the 35 
in question). The unit circle has an area of ~, thus by solving the equation: 
0.65xTr=~x(R) 2 for R, the lower limit of integration is obtained, e.g., 0.806. These 
radii are solved cumulatively within each cluster ID resulting in steadily decreasing limits 
of integration as distance from the edge increases to its maximum and the last lower limit 
of integration is 0. 

These limits of integration are then used in the definite integral associated with various 
urban population density decay functions shown in Figure 4. The value of this definite 
integral is the proportion of the total population that live in the pixels which are that 
distance from the edge of the cluster. This fraction is multiplied by the estimated total 
population of the cluster and divided by the number of pixels at that distance to produce 
an estimate of the population density of those pixels. It may be important to note here that 
all the pixels at a distance "x" from the edge of a particular cluster will be assigned the 



234 P. Sutton 

Name of Population 
Density Decay 
Function 

2-1) curve of 
function on 
the 0 to I interval 

Uniform 

2 

I,~ ̧  

1 

0.~ 

0~2 0.4 0.'6 0.8 i 

Linear/Conic 
! 

0.8 ~ \  
0.6 " ~  

0.2 0.4 0.6 0.8 I 

Parabolic 
1 \  

a8 \ 

0.4 

~2 

a2 ~4 a6 a8 i 

Exponential 

0.8 
0.7 
0.6 
0.5 ,-.. 
0.4 ~ '~, .  

0.2 0,4 0.6 0,8 I 

Gaussian 
1 

O,6 
0,4 

0.2 

as 1 1.8 2 Z8 i 

Algebraic 
Expression 
of2-D curve 

Y = I  

Y=l-x 

2 
Y=(1-x) 

-X 
Y=e 

y_## 

Definite Integral 
of Function on 
left rotated about 
Z-axis as on right 

x2 

x^2 
I 

I×1 

3(~2/2y(xA313)) 

x2 

x l  

x2 

3-D representation 
of function rotated 
about Z-axis 

xl 

)<2 

-e(eA(-.X)*(x+ I)) 

.7128 

xl 

x2 
~(3(xA2)) 

xl 

FIGURE 4. Graphic and algebraic representatiom of urban population demity decay functions. 

same population density value. The integrals solved are the urban population density 
decay functions rotated about the y axis. For  a graphic description of  this method of 
estimating population density see Figure 5. 

Several different functions were used to model the population density within each urban 
cluster (Figure 4). The simplest was a uniform model which simply assigned each pixel the 
same average population density on a per cluster basis. The second was a simple linear 
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The three urban clusters with their proportional equivalent circle and a table denoting the various estimates 
of population density within them based on the five population density decay functions described in Fig 4. 
Each cluster has an area of 29 km 2 which is modeled to a circle with a radius of 3.038 kin. The estimated 
population for each of the clusters is 2,777 persons. The various population density estimates are presented 
in the table. 

FIGURE 5. The three urban dusters of Pigure 3 with an equivalent circle and table with population 
den,Sty esmnmtes. 
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function that decreased from 1 to 0 over the range 0 to 1. The third was a parabolic 
function that decreased from 1 to 0 over the same 0 to 1 range. The fourth was an 
exponential decay which ranges from 1 to exp ( -  1) as distance varies from 0 to 1. The fifth 
was the standard Gaussian distribution for which the limits of integration were bumped up 
to 3 to include the first three standard deviations. An appropriate multiplicative constant 
was used on each of the definite integrals to insure that they all integrated to unity over the 
limits of integration: 0 to 2 ~ and 0 to 1. 

In addition to applying these theoretical models to estimate the population density 
inside these urban clusters, it was also possible to determine empirical population density 
decay functions from the actual population density data. The grid or image that contained 
the distance to edge information in aH the saturated pixels was overlaid over the actual 
population density grid. An average population density was calculated for each distance 
value. In addition a standard deviation was determined for each distance value. Plots of 
distance to edge of cluster vs. average population density and standard deviation of 
population density can be found in Figure 6. The sample size for these plots decreases with 
increasing distance. The left-most point for both of these plots is based on calculating the 
average population density and standard deviation of the population density for all of the 
pixels that are on the edge of any cluster. As the distance to the edge of the cluster increases 
the sample size (e.g., number of pixels used to calculate these values) drops significantly. 
As one moves to the right in these plots, to greater distances, one is moving into the hearts 
of these urban clusters. The first plot shows that population density does indeed increase 
with distance to the edge of the urban cluster. In fact, close inspection of  the point pattern 
suggests a Gaussian-like curve for distances from 0 to about 15 kin. None the less, a simple 
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FIGURE 6. Two graphs showing/he average population deusity of cluster pixels and standard deviation 
of  popular/on dewdty as a function of distance from edge of cluster. 
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linear fit on this curve produces an R-square of 0.87. This linear fit was used as an 
empirical model for the population density. It will be compared to the theoretical models 
in the Results section. Clearly the plot looks as if there are some problems with hetero- 
scedasticity. Some of the appearance is undoubtedly due to the declining sample size as 
distance increases; however, it is still likely that there is heteroscedasticity. 

The second plot is the standard deviation of the population density for the pixels with 
increasing distance to the edge of these clusters. It is interesting to note that the standard 
deviation increases with distance from the edge and is directly proportional to the mean for 
which it is measured. This does not bode well for the models described here. It indicates 
that any models that have uniform estimates of population density for all pixels at a given 
distance from the edge of a cluster will be unable to capture inherent variability in the 
population density for constant distances to the edge of urban clusters. In other words, all 
the pixels on the edge of an urban cluster have a standard deviation of population density 
that is almost as large as their average population density. It should also be noted that 
values for distances greater than 35 km were available but were not included in these plots. 
They were based on extremely small sample sizes because they were pixels deep in the heart 
of only the largest urban clusters. One possible means of reducing the increasing variance 
of the average population density would be to first classify these urban clusters based on 
either their absolute area or total population and then produce these kinds of curves for 
clusters of approximately the same size. 

RESULTS 

The theoretical models for estimating population density were applied to every urban 
cluster of the continental U.S.A. with each of the urban decay functions described in 
Figure 4 at spatial resolutions of 1, 2, 3, 5, and 10, square kilometer pixels. Table 1 is a list 
of all the cross-correlations between the model and the actual population density. The 
correlations were obtained by comparing and cross-correlating only those pixels in the 
urban clusters. (The figures would be a little higher if the dark or "source" areas were used 
with low or zero estimates of population density.) It is worth noting that the actual urban 
population is about 194 million whereas the model predicts 214 million. This total bias of 
20 million across the nation is a result of using the regression parameters from the log 
transformation of the population and area of the clusters. There are 591,351 saturated 
pixels in the DMSP OLS city lights image which have an average corresponding 
population density of 321 persons/kin 2. All of the models have an overall average 
population density estimate of about 362 persons/kin 2. This kind of bias could easily be 

Table 1. Correlation {R} Between Model and Actual Population Density as a 
Function of Spatial Resolution and Population Density Decay 

1 km 2 2 km 2 3 km 2 5 km 2 10 km 2 

Uniform 0.293 0.319 0.339 0.364 0.414 
Linear/Conic 0.518 0.562 0.594 0.629 0.691 
Parabolic 0.546 0.59 0.62 0.652 0.714 
Exponential 0.428 0.464 0.489 0.516 0.566 
Gaussian 0.541 0.584 0.614 0.647 0.709 
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corrected for by using nationally aggregated population figures and reducing all estimates 
by such a proportion. 

Another issue is the question of how well these two datasets are registered spatially. The 
tables below represent the cross-correlations between the model and the population density 
dataset for the Gaussian model at the five different spatial resolutions. The middle value is 
the correlation obtained at what is believed to be the true registration. The values in the 
surrounding cells are the correlations obtained when the image derived from the model has 
been shifted by the corresponding number of cells. In essence these figures show the 
influence of registration error on correlation at a range of scales. These tables suggest that 
the registration for these datasets is probably pretty good because the correlation is highest 
at the preferred registration at all scales. 

0.55 0.58 0.41 0.55 0.57 0.48 0.54 0.56 0.50 

0.60 0.71 0.47 0.58 0.65 0.52 0.57 0.61 0.53 

0.53 0.56 0.43 0.55 0.56 0.48 0.53 0.55 0.50 

10 km x 10 km Pixds 5 km x 5 km Pixels 3 km x 3 km Pixels 

0.47 0.'49 0.50 0.47 0.42 0.47 0.49 0.49 0.48 0.45 

0.49 0.53 0.55 0.51 0.44 0.48 0.51 0.52 0.50 0.47 

0.50 0.55 0.58 0.52 0.46 0.49 0.52 0.54 0.51 0.47 

0.49 0.52 0.54 0.50 0.45 0.48 0.50 0.51 0.49 0.46 

0.46 0.48 0.48 0.46 0.42 0.47 0.48 0.48 0.47 0.45 

2 km x 2 km Pixels I lun x I km Pixels 

Figures 7 and 8 are representations of the parabolic model applied to the Los Angeles 
cluster and the Baltimore-Washington DC cluster respectively. The uniform gray area is 
not saturated in the DMSP OLS image and is consequently not modeled at all. 
Superimposed on the gray-scaled model is a contour map of the actual population density 
of these areas. The contour map is a gross generalization of the actual 1 km 2 population 
density grid of  these areas, but it does give an overall feel of the actual population density 
of these areas. The grid of population density has a much higher degree of variability than 
is suggested by the contour lines. None the less, these images suggest a correlation between 
the model and the population. Surprisingly the correlations for these clusters have R 2 
values of only 0.22 and 0.25 respectively (Figures 7 and 8). Yet these figures are none the 
less representative of the model's general application because the R 2 values are typical of 
the model for the whole continental U.S.A. These R z values are low because of the model's 
inability to identify variability of population density at constant distance to edge. The 
standard deviation vs. distance curve of Figure 6 clearly shows one of the reasons that 
these R 2 values are as low as they are. In fact, it is surprising that the models capture as 
much of the variation in population density as they do considering the fact that they are 
derived from a binary image. 

An empirical model derived from the linear regression shown in Figure 6 was also 
developed. In this model the estimated population density was simply the parameters of 
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The parabolic population density decay function applied to the Los Angeles cluster and 
environs. The contour lines are the actual population density and are at intervals of S00 
persons/km 2. The correlation (R) between the actual population density and the modeled 
values for just those pixels in the L.A. Cluster is: 0.51. The smaller inset is an image of 
the actual population density minus the predicted population density. A distribution of these 

! values is to the right of this inset. 

HGURE 7. A representation of/he parabolic model applied to the Los Angeles duster with a population 
demudty coutou~ map superimposed over/he model. 

the linear regression: estimated pop. den. = 25 + 75 x (distance to edge in kilometers). This 
model overestimated the total  population of  the urban clusters of  the U.S.A. by about  
11%. The mean value of  the empirical model was 358 whereas the actual average 
populat ion density of  the cluster pixels was 321. The empirical model did have the best 
correlation with the actual populat ion density but not by a large margin. The correlation 
{R) between the empirical model and actual population density on the one square 
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FIGURE 8. A representation of the p~rabolic model applied to the Boston--W=dtln~on DC corridor 
cluster with a population density contour map superfumpoeed over the model. 

kilometer scale was 0.578. Recall that the one kilometer parabolic and Gaussian models 
had correlations of  0.546 and 0.541, respectively. 

One means of  improving the empirical model would be to classify the cities into sub- 
groups based on either their areal extent or total population and then determine the 
empirical population density decay function. This would eliminate the averaging o f  pixels 
on the edge of  large clusters such as New York from pixels on the edge of  small clusters 
like Santa Barbara. Figure 9 shows the plots of  average population density as a function of  
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distance for six different size classes of urban cluster. As cluster size diminishes the greatest 
depth also diminishes. Plots of standard deviation of population density are not shown but 
all of  them show the same pattern as described in Figure 6. It is interesting to note that the 
slope parameter for the two large classes of urban cluster is lower than the slope of the four 

The Urban Clusters 
classified by size. Plots below 
show empirical measurements 
of population demity as a 
function of distance to edge of 
cluster for each size class. 
Linear Regression data 
is provided for each size 
category. Each point in the plots 
is the average of all the pixels 
at that distance from edge of a 
cluster in the cities of that size. 
As depth into duster increases 
the number of pixels used to 
calculate the averege pop. 
density diminishes. About 2% 
of the data come from pixels 
that are very deep (at large 
distances) in the cluster. These 
were not included in the plots 
if they were derived from 
samples of less than 30 pixels. 

• , "~'.~ ! 11 clusters with / 
Area > 5000 km ~ J 

R = = 0,94 
Slope: 

. . . . . . . . .  80 (persons/km2)/km 

Average Population Density (Y) vs. Distance to 
Edge of  Cluster (x) for the Megacities 

t ~  . . . . . . .  R'S~0"93 

73 (persons/km~)/km 

Average Population Density (Y) vs. Distance to 
Edge o f  Cluster (x) for the Very Large  Cities 

/ 

Average Population E 
Edge of  Cluster (x 

t 

/ i 
/ i 

:7, / ' 
. . . . . . . . .  1'50i 

R 2 = 0.98 
Slope: 

108 (persons/km~)/km 

fitv (Y~I vs. Distance to 
Edge of  Cluster (x) for the Medium Cities 

Average Population Density (Y) vs. Distance to 
Edge of  Cluster (x) for the Small Cities 

i R = = 0.92 
i Slope: i 
! 118 (persons/km2)/km 

J 

)ensity (Y) vs. Distance to 
x) for the Tiny Cities 

FIGURE 9. Plots o f  the empirical population density decay functions for six different sizes 
of  urban duster .  
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smaller classes. The population density gradient for the large cities is about 75 persons/kin 2 
per kilometer. It is about 110 for the four smaller classes. This suggests that, on average, 
the population density increases more rapidly with depth for small urban clusters than it 
does for large urban clusters. This may be due to the fact that the large urban clusters are 
primarily composed of the conurbations of one or more separate cities. The San Francisco 
cluster includes Oakland, San Jose, and other cities. The New York cluster reaches into 
Connecticut and New Jersey. Conurbation may result in deflating the gradients as 
measured in this way. None the less, the empirical curves are interesting and linear 
regressions are an oversimplification of the gradients. All of the curves show population 
density increasing with distance in ways reminiscent of the theoretical exponential decays 
of traditional urban geographic theory. 

A model was built in which each cluster was classified by size and then modeled based 
on the corresponding regression shown in Figure 9. This model showed no significant 
improvement on the single empirical model of Figure 6. This shows that in order to 
improve correlations it is necessary for future models to include information that accounts 
for the variability in population density that occurs at constant distances to the edge of 
these clusters. 

DISCUSSION 

The method of modeling population density presented here requires very little input 
information. The only information used is a binary DMSP image and a relationship 
between area and population for urban clusters. The model is then developed using the 
spatial information in the image and applying various urban population density decay 
functions to the urban clusters. These theoretical models explain almost as much variation 
as empirically derived population density decay functions that depend on distance alone. 
These rather simple beginnings may prove to be a good starting point for the development 
of a more accurate method of modeling population density that uses additional 
independent sources of information such as those produced by the USGS at the EROS 
data center which include the NDVI greenness index from AVHRR, digital elevation data, 
climate, and more (Loveland, Merchant, Ohlen, & Brown, 1991). In addition, a low-gain 
version of the DMSP imagery will soon be available. It may prove to be quite useful 
because it shows much more variation within the urban clusters (e.g., the images are not 
saturated). 

The concept of population density is an abstract one. Consequently, attempting to 
model it raises many questions. The ground truth data used in this paper was derived from 
a vector dataset of  the blockgroup polygons of the 1990 U.S. census. Assumptions were 
made to convert this dataset to a grid. One assumption is the uniformity of population 
density within the block group polygons. Using this dataset as the ground truth may not be 
entirely appropriate. Alternative ground truthing methods may show that the correlations 
obtained here are actually underestimates. The census is also a measure of the night-time 
population location. Despite the fact that the DMSP imagery is also produced at night, it 
may be providing clues as to where the population is in the day also. The downtown areas 
of many cities show up as very bright despite the fact that they often have lower uight-time 
population densities. These population densities are much higher during the working hours 
of the day. How much does the population density of an urban center vary on a temporal 
basis? Clearly it is difficult to measure the error inherent in a model of this nature because 



Modeling Population Density 243 

the truth is an elusive quantity that varies temporally and spatially in complex ways that 
are difficult if not impossible to measure for appreciably sized areas. Future work will 
focus on identifying additional information that can augment that captured by this model. 
In addition, these models will be run on other countries of the world to determine whether 
aggregate national figures such as GDP, GDP per capita, percent of population in rural 
areas, and other such figures can explain any of the expected variability between nations in 
the relationships between population and night-time satellite imagery. Earlier work has 
shown that the relationship between settlement size and settlement population varies 
dramatically at some regional and international scales (Stewart & Warutz, 1958; 
Nordbeck, 1965; Tobler, 1969). Explaining this variation with aggregate national 
economic, demographic, and political data could greatly improve our ability to predict 
rates of urbanization in parts of the world where good population data does not exist. 

CONCLUSION 

The model described in this paper accounts for 25% of the variation in the population 
density of the urban areas in the continental U.S.A. from information contained in a 
binary image derived from DMSP OLS imagery and some relatively simple spatial 
analysis. This may prove to be a good foundation for developing a model of population 
density estimation for other parts of the world where census data is not available. Future 
efforts will focus on improving the correlation between the model and reality via the 
inclusion of additional information from the AVHRR and DMSP OLS low gain satellites. 
It is hoped that this information will account for variability in population density that 
occurs at constant depth within the urban clusters defined here. Any overall bias in these 
models can easily be corrected with aggregate national and/or sub-national population 
totals. Additional ground truth data will be obtained in countries with varying levels of 
economic development, rural/urban population ratios, and predominant means of 
transportation in an attempt to explain large scale variation in population patterns that 
is expected across these variables. 
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