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Abstract

The striking apparent correlation between nighttime satellite
imagery and human population density was explored for the
continental United States. The nighttime stable-lights im-
agery was derived from the visible near-IR band of 231 orbits
of the Defense Meteorological Satellite Program Operational
Linescan System (DMSP-OLS). The population density data
were generated from a gridded vector dataset of the 1992
United States census block group polygons. Both datasets are
at a one-square-kilometre resolution. The two images were
co-registered and correlation between them was measured at
a range of spatial scales, including aggregation to state and
county levels. DMSP imagery showed strong correlations at
aggregate scales, and analysis of the saturated areas of the
images showed strong correlations between the areas of satu-
rated clusters and the populations those areas cover, The
non-zero pixels of the DMSP imagery correspond to only 10
percent of the land cover yet account for over 80 percent of
) continental United States population. Spatial analysis of

“w¢ clusters of the saturated pixels predicts population with
an R* of 0.63. Consequently, the DMSP imagery may prove. to
be useful to inform a “smart interpolation” program to im-
prove maps and datasets of human population distributions
in areas of the world where good census data may not be
available or do not exist.

Introduction

The growth in human population has profound social, eco-
nomic, and environmental consequences. Accurate data on
the spatial distribution of human population is critical in ad-
dressing the causes and impacts of global environmental
change. Information concerning the arrangement of human
population might improve proactive responses to the envi-
ronmental degradation that often accompanies high popula-
tion densities. Knowledge of human settlement trends at a
global scale is essential in order to manage the rapid and in-
evitable urbanization of the planet (Tolba, 1992). According
to Ehrlich (1988), the primary cause of the loss of biodivers-
ity is the habitat destruction resulting from the expansion of
human populations and human activities. The global effects
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of land-cover conversion on ecosystems and human wealth
and well-being may be much larger than those arising from
climate change (Skole, 1994). High quality data on the size
and distribution of the human population over the whole
planet is critical in order to monitor, understand, respond to,
and perhaps even prevent environmental degradation, loss of
biodiversity, and resource depletion in many parts of the
world.

Nonetheless, consistent population data useful for these
purposes does not exist (see Clark and Rhind {1992) for an
excellent survey of global demographic data}. One of the
most comprehensive global demographic datasets was re-
cently compiled at the University of California at Santa Bar-
bara by the National Center for Geographic Information and
Analysis (NCGIA). This global demography project was a joint
effort of the NCGIA and the Consortium for International
Earth Science Information Network (CIESIN) with additional
funding from the Environmental Systems Research Institute -
(ESRI) (Tobler et al., 1995). While this project serves an im-
portant function in addressing the need for data on the hu-
man population, it is limited in its spatial resolution and is
extremely difficult to update. The global demography dataset
was produced by gathering available census data from all the
nations of the world. The level of aggregation was the second
sub-national administrative unit (e.g., U.S. counties). How-
ever, data at this level of aggregation were not always avail-
able. For example, the-only data available for Saudi Arabia
was one national figure (Gottsegen, 1995, personal communi-
cation). In addition, the data that were provided by the vari-
ous nations of the world may be very suspect. For example,
a study of the migration data for the sub-national administra-
tive units in China suggests that the one-child policy has
caused a significant underestimate of the population of China
(Deng, 1994). Instead of the conventional estimate of 1.2 bil-
lion for the population of China, Deng asserts it could be as
high as 1.5 billion. The difference between these two esti-
mates is greater than the total population of the United
States.

This paper describes the comparison of two datasets that
cover the continental United States. The first image is a 1-km?
resolution grid of the population density derived from the
1990 United States decennial census. The grid was derived
from the block group layer of the Bureau of the Census Top-
ologically Integrated Geo-referenced and Encoded Referenc-
ing System (TIGER), and proportionally allocated to 1-km?
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cells. This dataset was developed by the Socioeconomic Data
and Applications Center (SEDAC) at CIESIN (Meij, 1995). The
second dataset was produced by Elvidge et al. (1995) at the

. NOAA National Geophysical Data Center. This dataset is a
composite image of 231 orbits of the nighttime passes of the
Defense Meteorological Satellite Program (DMSP) over the
continental United States. These two images were co-regis-
tered and compared at various scales and by using several
methods of spatial aggregation.

Background

The use of remote sensing techniques as a means of estimat-
ing human population parameters is not new; however, pre-
vious methods have been site-specific or computationally
intensive, which makes them inadequate for generalization to
a global scale (Forster, 1985). Ogrosky (1975) achieved a high
degree of correlation (0.96) between population and the loga-
rithm of image area classified as urban in the Puget Sound
area; however, the nature of these relationships have been
shown to vary from region to region. In addition, the classifi-
cation scheme for defining “‘urban” is likely to vary from re-
gion to region. The work of Clayton and Estes (1980) was a
check on census enumeration accuracy in the Goleta Valley
and involved the counting of buildings in high altitude color
infrared photographs. This method is clearly too labor inten-
sive to apply at larger scales.

The regionally unique nature of human settlement pat-
terns makes it extremely difficult to generalize any findings
beyond the regions of inquiry. The signal detected in day-
time imagery is produced primarily by reflected sunlight,
most of which is not influenced by human settlement or ac-
tivity; in contrast, most of the VNIR radiation detected in the
stable lights DMSP OLS image is produced by human activi-

. ties. Consequently, nighttime visible and near-infrared emis-

- sions may prove to be a robust proxy for human population.
In addition, the use of ancillary socio-economic data by em-
ploying a geographic information system (GIS) may prove to
be a means of correcting for any site-specific regional varia-
tion. This method has the potential to improve our estimates
of population parameters, particularly for regions where cur-
rent data are lacking.

Nighttime imagery provided by the Defense Meteorologi-
cal Satellite Program (DMSP-OLS) has been available since the
early 1970s. The DMSP sensors are more than four orders of
magnitude more sensitive to visible near-infrared radiances
than traditional satellite sensors optimized for daytime obser-
vation (Elvidge et al., 1995). Observations of the striking
qualitative correlation between DMSP imagery and maps of
population distribution have undoubtedly motivated many
studies (Croft, 1977; Croft, 1978; Foster, 1991) (see Figures 1a
and 1b). Simple quantitative correlations between light levels
and population density have not been identified. However,
other indirect means of identifying strong quantitative rela-
tionships between satellite imagery and population have
been explored.

Tobler (1969) used satellite imagery to confirm settle-
ment size coefficients for the equation r = axP?, where r is
the radius of the of the populated circle, a is an empirically
derived constant of proportionality, P is the population, and
b is an empirically derived exponent. Estimates of these
parameters are fairly consistent at regional scales but the es-
timate of the a parameter vary markedly between regions
(Boyce, 1963; Maher, 1969; Nordbeck, 1965; Stewart, 1958).
DMSP OLS imagery has also been correlated with energy con-

ssumption, r = aXX?, where X is energy rather than popula-

“tion, producing a correlation coefficient of 0.89 (Welch,
1980). Another study by Welch and Zupko (1980) used den-
sitometry methods on older DMSP imagery which were gener-
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ated in an analog manner on mylar films. In this study,
correlation coefficients of 0.95 and 0.96 were found between
the DMSP imagery and population of cities utilizing the same
formula, r = aX P, Energy consumption data were also ob-
tained for the cities investigated and correlated with the
DMSP imagery in a similar manner.

One drawback of these approaches is the fact that the a
parameter varies substantially across the globe, despite the
fact that it is consistent at regional scales. Clearly, there are
cultural, economic, and/or environmental determinants of
this parameter that cannot be obtained from the satellite im-
agery alone. The existing findings show a spatial variation in
this parameter; however, if there are other determinants of
this parameter, it is likely that it will also vary with time.
This suggests that identifying known spatial and possible
temporal variation in these parameters may provide a
method for developing a systematic and operationalizable
means of using DMSP imagery to model urban populations at
regional scales. One area of future research may determine if
there are systematic means for extrapolating these methods
across regions by utilizing national aggregate data such as
percent of population in urban areas, GDP per capita, energy
consumption per capita, etc. The early investigations were
hampered by the nature of the data itself. Digital DMSP data
were not.archived until 1992. The resolution of the DMSP im-
agery was coarse, and the computing power needed to filter
out clouds and fires was not available even if the data were
available in digital format. Consequently, the investigations
focused on specific urban areas, and most of the land areas
of the regions investigated were ignored. Improvements in
computing power, sophisticated GIS and image processing
software, and the availability of the data in digital format
suggest a re-examination of these techniques and their poten-
tial for monitoring and/or modeling the human population
using nighttime satellite imagery is worthy of investigation.

Methods

The development of the digital DMSP archive has dramati-
cally improved access to and utility of the DMSP data. DMSP
data are now available in digital format, and algorithms de-
veloped by Elvidge et al. (1997) have produced a 1-km-
square resolution dataset of the city lights of the continental
United States. Elvidge et al. developed algorithms to identify
spatially stable VNIR emission sources utilizing hundreds of
orbits and the infrared band of the DMSP system to screen out
cloud impacted data.

At the time this research was conducted, there were two
versions of these data available. In one version of the data,
the value in the pixel was a percentage of times light was
seen relative to the number of cloud free orbits for which
that pixel was sampled. The other version simply used the
maximum light level for a pixel for those cloud free orbits.
The data used for this analysis were the maximum value per
pixel. The rationale for choosing the maximum rather than
the percent version of these datasets is because the physical
interpretation is more direct and it proved more amenable to
the subsequent spatial cluster analysis that was performed.
The percent data is nonetheless quite interesting because
there is a greater degree of variability in the pixel values
within the urban clusters, which may prove to be a better da-
taset for identifying a direct correlation between pixel value
and population density. However, since this analysis was
performed, another dataset has been produced from the low-
gain DMSP OLS system of the nighttime city lights. This data-
set has much more variability within the urban clusters and
has a more direct physical interpretation for using light in-
tensity to predict population density on a pixel-by-pixel ba-
sis. This avenue is presently being explored. For a detailed
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ite DMSP image of the Continental United States.

Figure 1. (a} Population density of the United States derived from the 1990 U.S. Census. (b) Compos-

discussion of these methods, see the aforementioned refer-
ence. The Elvidge et al. (1997) data were coregistered with
the dataset developed by SEDAC at CIESIN.
Two simple tests were run to ensure that the values of

*he population density pixels were reasonable and that the

)-registration and geolocation of the images were reason-
able. The tests involved the use of vector GIS coverages of
the continental United States being overlaid over each image.
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The population density pixels were then integrated (the DN
of each pixel was summed for all the pixels in each state)
and compared with the published census population of each
state. This resulted in a set of 49 pairs of population points.
A regression was run on these points and resulted in an R?
of 0.999, A similar test was run on the DMSP OLS stable lights
image in which the count of the number of pixels per state
was compared to the known area of each state. The R for
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Figure 2. (a) Distribution of population density values {note: non-uniform classifica-
tion). (b} Distribution of bMSP pixel values (6-bit data ranging from 1 to 64).

this regression was 0.999 also. The slopes of these regression
lines were not significantly different from one. Similar re-
gressions were run on data generated by aggregating to a vec-
tor coverage of the United States counties with similarly high
correlations.

A focus of this investigation was to quantify the correla-
tion between these two images at a range of scales and to
explore various aggregation techniques and data transforma-
tions to maximize the correlation. The DMSP OLS dataset is
available in an Interrupted Goode’s Homolosine projection.
The re-projection of this dataset into the Lambert Azimuthal

“Equal Area (LAZEA) projection is shown in Figure 1a. The
population dataset is also available in the LAZEA projection
(Figure 1a). The DMSP OLS stable lights dataset was re-pro-
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jected to the projection of the population density dataset for
the purpose of quantifying any cotrelations between the two
images.

The DMSP OLS data have 6-bit quantization, providing a
dynamic range between 0 and 63. Once the stable lights im-
age was geo-referenced, the land values were incremented by
one unit to distinguish land pixels from ocean pixels. Of the
pixels that are part of the land of the continental United
States, 89 percent have a value of one, 8 percent have a
value of 64 (saturated), and 3 percent have intermediate val-
ues from 2 to 63 (Figure 2b). It should be noted that the fre-
quency of all the intermediate values monotonically
increases from low values to high. Clearly, many of the pix-
els in urban areas are saturated at 64, and this presents many
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Plate 1. Saturted DMSP pixels classed as Urban ‘clsters” based on adjacency with insets
of the Chicago-Detroit area and the New York to Boston corridor.

problems for identifying a quantitative correlation between
light intensity and population density (particularly in areas
of high population density). It also presents difficulties for
transforming either variable to improve the correlation. This
correlation could perhaps be improved if the percent detec-
tion dataset or the low-gain dataset were used.

The population density image has a distinctly different
distribution (Figure 2a). Like the DMSP OLS image, the most
common values are the low values of zero and one person
per square km (41 percent and 57 percent of the pixels, re-
spectively); however, the frequency of higher values de-
creases monotonically in a manner suggesting an exponential
- decay. The values range from a minimum of zero to a maxi-
mum of over 50,000 persons/km?.

Another manipulation of the data was performed in
which all of the saturated pixels in the DMSP OLS stable-lights
image were grouped in such a way that all adjacent saturated
pixels were clustered into independent urban “clusters”
(Plate 1 with insets). These urban clusters were overlaid over
the population density dataset to produce a set of over 5000

~aired data points in which the first value was the area of
. uration or urban cluster and the second value was the ac-
“tual population that lived within that area.

These manipulations of the data allow for comparisons

of the two datasets in several ways: (1) correlation on a
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pixel-by-pixel basis, (2) correlation at a variation of scale of
resolution on a pixel-by-pixel basis, (3) correlation of aggre-
gated DMSP pixels at state and county level to population of
State and County populations, (4) utilization of the spatial
nature of the data to cluster saturated “urban” areas and
compare them to their corresponding populations. The re-
sults of these comparisons follow.

Results

Table 1 describes the distribution of the values of the over-
laid pixels of the two datasets. The first column gives the
values for the DMSP OLS pixels; the second column describes
their relative frequency. The remaining columns provide de-
scriptive statistics regarding the values of the population
density pixels that overlap with the DMSP OLS pixels of that
value. The first and last line in this table are the most inter-
esting. The first record or line, for those square kilometres
that register a one on the DMSP sensor (these pixels were re-
ally zeroes but one was added to all pixels that were on the
land to distinguish them from zero pixels on the ocean), con-
stitutes almost 90 percent of the continental United States
and only 17 percent of the human population. The remain-
ing 10 percent of the pixels (those with non-zero DMSP val-
ues) coincide with over 80 percent of the human population.
This may be one of the most valuable pieces of information
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TaBte 1. TaBLE OF DMSP PixeL VALUES AND CORRESPONDING PoputaTion DENSITY VALUES

DMSP # Of Mean of Max of Range of Sum of Pop Std Dv Median % of % of
Pixel Pixels at Pop Pxls Pop pxls Pop pxls pxls at this Pop pop Total DMSP
Value this value at value at value at value DMSP pxl value pxls pxls Pop pxls
1 6880018 - 5.978 4258 4258 41125756 18.4 1 17.42 89.34
12 9 3.556 9 9 32 3.2 4 0 0
13 26 4.962 22 22 129 5.3 6 0 0
14 63 5.159 40 40 325 9.3 0 0 0
15 164 3.354 77 77 550 7.8 0 0 0
16 230 5.896 76 76 1356 12.9 1 0 0
17 337 4.329 83 83 1459 9.4 1 [¢] 0
18 441 5.739 107 107 2531 14.4 1 0 0.01
19 637 8.777 : 176 176 5561 20.9 2 0 0.01
20 804 9.649 327 327 7758 23.3 2 0 0.01
21 1063 7.272 173 173 7730 14.9 1 0 0.01
22 1283 9.44 223 223 12112 18 3 0.01 0.02
23 1502 9.792 278 278 14708 21.4 3 0.01 0.02
24 1855 11.57 333 333 21462 24.3 3 0.01 0.02
25 2035 11.956 289 289 . 24331 24.3 3 0.01 0.03
26 2152 13.633 393 393 29338 29 5 0.01 0.03
27 2349 12.875 384 384 30244 26.3 4 0.01 0.03
28 2587 13.351 1124 1124 34538 30.6 5 0.01 0.03
29 . 2938 16.147 657 657 47407 35.1 5 0.02 0.04
30 3128 15.004 1332 1332 46932 36.6 5 0.02 0.04
31 3194 16.413 581 581 52423 30.1 6 0.02 0.04
32 3494 17.082 471 471 59685 31 6 0.03 0.05
33 3555 15.82 512 512 56239 28.2 6 0.02 0.05
34 . 3883 18.218 666 666 70740 39.4 6 0.03 0.05
35 4017 18.903 2014 2014 75934 46.7 7 0.03 0.05
36 4185 18.521 1892 1892 813086 47.8 7 0.03 0.05
37 4386 - 18.11¢9 643 643 79472 33.2 7 0.03 0.06
38 4683 20.99 916 916 98295 40 8 0.04 0.06
39 4919 21.364 821 821 105088 40.3 7 0.04 0.06
40 5143 23.085 738 738 118726 44.3 9 0.05 0.07
41 5264 21.343 1111 . 1111 112347 43.6 - 9 0.05 0.07
42 5353 22.644 721 721 121211 39.5 10 0.05 0.07
43 5380 23.022 721 721 123859 40.6 10 0.05 0.07
44 5772 25.673 702 702 148186 45.6 11 0.08 0.07
45 5862 25.413 1157 1157 148970 43.9 12 0.06 0.08
45 6264 24,107 893 ’ 893 151004 42.3 10 0.06 0.08
47 6434 25.347 1333 1333 163085 44.9 11 0.07 0.08
48 6685 29.073 1940 1940 194354 56.1 13 0.08 0.09
49 6848 28.394 979 979 194443 49.8 12 0.08 0.09
50 7154 29.488 985 985 210955 50.2 14 0.09 0.09
51 7110 30.611 1418 1418 217643 51.9 14 0.09 0.09
52 7505 30.46 1079 1079 228599 55.7 14 0.1 0.1
53 7649 31.493 1468 1469 240890 54.1 15 0.1 0.1
54 7501 32.443 1440 1440 243354 55.4 15 0.1 0.1
55 7674 32.101 1282 1282 246343 53.8 15 0.1 0.1
56 8070 34.076 965 965 274991 60.4 15 0.12 0.1
57 8418 33.211 2009 2009 279571 62.9 16 0.12 0.11
58 8376 36.364 3631 3631 304584 78.6 18 0.13 0.11
59 8502 36.936 1197 1197 314029 61.8 18 0.13 0.11
60 9331 37.82 2087 2087 352903 62.5 20 0.15 0.12
61 9236 37.699 1247 1247 348186 59.8 20 0.15 0.12
62 9501 40.73 2000 2000 386975 73.8 19 0.16 0.12
63 ° 9597 41.341 2220 2220 396746 72.6 20 0.17 0.12
64 586561 321.36 53465 53465 188497792 798.3 7 79.83 7.62

with respect to how the DMSP OLS data can act as a proxy for
population parameters. The DMSP OLS imagery locates over
80 percent of the continental United States population on
only 10 percent of the land. The third column of the table is
basically a measure of the average population density for
pixels at the corresponding value of the DMSP OLS pixel.
There is a clear trend towards increasing population density
with increasing DN values for the DMSP OLS imagery; how-

. ever, this trend makes a dramatic jump at the last DMSP

/ value (i.e., from 63 to 64). The mean population density
value increases from around ten persons per square kilome-
tre at a DN of 1 to 41 persons per kilometre at a DN of 63, but
it jumps to 321 at the next increment of the DMSP value. This
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Is a result of the saturation of the DMSP sensor in what are
primarily heavily urbanized areas. This high incidence of
saturation is clearly a result of choosing the dataset for
which the pixel value is the maximum observed value rather
than the percentage of times a signal was seen. Further ex-
ploration with both the low-gain DMSP OLS dataset and the
percent detection version may show stronger direct relation-
ships with some population parameters on a pixel-by-pixel
basis.

The fact that the DMSP image is saturated in heavily pop-
ulated urban areas suggests that aggregation of both images
to lower resolution may improve the correlation. Such a ma-
nipulation could “buffer” out the effects of saturation and
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Figure 3. Images of log(population density), DMSP, and population density aggre-
gated to resolutions of 5, 20-, and 50-square-kilometre pixels.

DMSP image @50 km 3G pixeis

Popuiation Density 50 km plyels

mitigate any influences of mis-registration. Figure 3 shows
images of the DMSP data, population density, and the log of
population density at 5-, 20-, and 50-square-kilometre resolu-
‘tions.

) Data on the percentage of the population of each state

" it lived in urban areas were also obtained. Thus, by multi- .

plying total population by percent urban, as defined by the
Bureau of the Census, it was possible to run a regression be-
tween the urban population of each state versus the inte-
grated value of the DMSP imagery for each state. This was
done to test the hypothesis that the DMSP imagery was really
better at being a proxy measurement of the urban population
of states. This regression actually resulted in a slightly lower
R? than the one that simply compared total population and
the integration of the DMSP pixels in the state.

The first and most direct comparison of these two im-
ages was a simple correlation between the raw value of pop-
ulation density pixel and the DMsP pixel value. This
cross-correlation resulted in a correlation coefficient of r =
0.26. One explanation for the low correlation is simply the
fact that the DMSP saturates in most of the areas of high pop-
ulation density. The distribution of the DN values of the two
images clearly shows why direct correlations will be prob-
lematic. Transforming the population density data by taking
its natural logarithm is one means of improving the correla-
tion. The correlation between the DMSP image and the log

-(population density) raises the correlation coefficient to r =
0.40. This result remains unsatisfactory and there is no obvi-
ous physical justification for performing such a transforma-
tion.

Another transformation involves making use of the spa-
tially referenced nature of the data. Aggregating the pixels to
a coarser resolution and using the mean of the constituent
pixels as the new larger pixel value usually results in an im-
nroved correlation. If there is a scale at which a dramatic

nge in maximum correlation occurs, it may suggest an ap-
propriate scale for performing analyses of this nature. Aggre-
gation for both the population density versus DMsP image
and the log of the population density versus the DMSP image
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point. The correlation does not maximize at any point be-
tween 1 km?* and 100 km? for the Population Density versus
DMSP images, yet it does reach a maximum somewhere be-
tween 20 km? and 100 km? for the log (Population Density)
versus DMSP images. Nonetheless, the changes in correlation
are not dramatic enough to suggest that there is an optimum
scale of resolution for performing these analyses. Correla-
tions generally increase as spatial resolutions decrease for
most analyses of this nature.

Aggregating DMSP light values to state and county levels
of aggregation is another means of investigating the correla-
tion between population density and DMSP light value. A
vector image of the 48 continental United States was used to
generate 49 datapoints (each of the lower 48 plus the District
of Columbia), in which the predictor value is an integration
or sum of all the DMSP pixel values that existed in each state
and the predicted value is the population of the state. A re-
gression on these 49 points produced an R? of 0.69. A similar
analysis of all the counties of the United States produced an
R of 0.50. These regressions were also run on the natural log
of the population of the states and counties against the inte-
grated DMSP pixel values, respectively, resulting in R of 0.61
and 0.48, respectively (Figures 5a through 5d).

It does not appear that there is any strong quantitative
relationship between the intensity of light emitted from a
particular place in the United States as measured by the
DMSP sensor and the population density of that place. Most
of the lack of correlation is undoubtedly due to the satura-
tion of the DMSP sensor. A reclassification of the DMSP image
in which all pixels with a value of 63 were set to NODATA
resulted in a correlation of r = 0.02. Clearly, the intermedi-
ate DMSP values from 2 to 63 do not contribute to the corre-
lation to any great extent. These results do suggest that an
increased dynamic range of the DMSP OLS instrument could
© improve the correlation. The striking qualitative correlation
between the two images suggests that these methods are not
capturing an important facet of the relationship between
population density and the nighttime light emissions. The
spatial nature of the DMSP imagery is one of its strongest at-
tributes with respect to utilizing it as a proxy for population.
Unfortunately, the DMSP OLS stable-lights data do not show a
strong correlation with population density within saturated
urban clusters. However, by utilizing the spatial nature of the
data, the theory of exponential decay of population density
from the center to the edges of urban areas suggests a method
for estimating the total population of the whole urban cluster
from it’s area alone. We were interested in confirming this
theory of exponential decay of population density with a vi-
sual representation of the errors from a simple linear regres-
sion analysis.

A simple linear regression model was developed to use
the value of the DMSP pixel to predict the population density
of the matching pixel. This was done on the 1-km? resolution
data. The F-test was significant to the 0.999 level and the R?
was the 0.26 that was previously mentioned. This spatial
analysis of residuals proved to be quite interesting. The
model was built as follows:

Population Density = Constant + CoefficientX (DMSP DN
value), resulting in the following parameters:
Intercept = 9.5; Slope = 3.3.

An image of the predicted value of the population den-
sity based on these regression coefficients was produced and
subtracted from the actual population density image. This
image was reclassed into categories in which overestimates
' are depicted in green and underestimates in red. The image
is black in areas where the estimate was close to the popula-
tion density. Detailed insets for this image are produced in
Plate 2 for selected urban areas in the United States. These
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insets clearly show a non-random pattern in the errors asso-
ciated with the prediction of population density from DMSP
imagery. DMSP imagery underestimates the population den-
sity of urban centers and overestimates the population den-
sity of suburban areas. And as stated before, it is fairly
accurate at identifying places of low population density. It is
also likely that the green areas indicate areas of suburban
population growth. These results are well in keeping with
the theory of exponential decay of population density from
the centers of urban areas.

The images of the residuals of the linear regression
clearly suggest that there may be another means of identify-
ing a strong correlation between population density and
nighttime light emission. The best means of extracting this
strong quantitative measure of this correlation proved to be a
manner virtually identical to the previously mentioned meth-
ods of Tobler (1969), Welch (1980), Boyce (1963), Maher and
Bourne (1969), Nordbeck {1965), and Stewart and Warntz
(1958).

The means by which this was accomplished was alluded
to earlier in the description of the methods. The DMSP image
was grouped by its adjacent saturated pixels into what are
presumed to be urban clusters. Plate 1 is an image of some
of these urban clusters. The largest three urban clusters by
area were the New York metropolitan area (which included
almost all of Long Island and extended parts of New Jersey
and Connecticut), the Chicago metropolitan area, and the Los
Angeles basin, The areas of these urban clusters (as defined
by the number of saturated pixels from the DMSP image)
were plotted against the population that lived within these
urban clusters as derived from the grid of the U.S. census
data. A linear regression and an exponential model were fit
to these points and resulted in R* values of 0.84 and 0.93, re-
spectively. The influential nature of the extreme points such
as the New York, Chicago, and Los Angeles areas suggest
that a transformation of the data is called for. The following
theoretical model is given:

R = (a)X(Pop)(®).

Taking the natural logarithm of both sides of this relation-
ship results in a linear relationship between log(Radius) and
log(population). The intercept of this line is the “a” param-
eter and the slope of this line is the “b” parameter. Figure 6
is a plot of the natural log of the area of the urban clusters
versus the natural log of the population within those urban
clusters. A linear regression between these two variables pro-
duced an R? of 0.62. This is somewhat lower than the others
because the influence of the large values is dramatically miti-
gated by this transformation of the data. A quick glance at
this plot might suggest that there is a problem with hetero-
skedasticity or unequal variance. This appearance may
merely be a result of the paucity of data points at higher val-
ues or it may indicate that the relationship is even stronger
for larger urban areas (i.e., has lower variance for large val-
ues). This analysis was made quite simple with the use of a
GIS. It allowed for the identification of a strong correlation
between light emission and population density by taking ad-
vantage of the spatial information inherent in the data.

Conclusion

Despite the fact that DMSP imagery is the most sensitive sat-
ellite data available for monitoring VNIR nighttime emissions,
it does not show a strong simple quantitative correlation
with human population density. This correlation may be
greatly improved if the dynamic range and/or the spectral or
spatial resolution of the sensor were improved. However, the
DMSP imagery serves useful purposes in other ways. Clearly,
it is an indicator of human presence in a powerful qualita-
tive way in the United States. Saturated pixels capture over
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Seattle and Puget Sound Area

[

B o Area )

The Florida Peninsula New Orleans and Mississippi Delta
Plate 2. Insets of error images for six regions of the United States. Values are actual population
density minus regression estimate. Red areas are overestimates, green areas are underestimates,
and black areas are accurate. The distribution of these residuals is not normal (see legend). Areas
outside saturated urban clusters are in black. The standard deviation of residuals is 814 persons
per square kilometre.

80 percent of the population on only 10 percent of the land.  gion of the world to the next. If these parameters can be
* This alone is a powerful indication of the spatial distribution  either identified for other parts of the world or shown to be

of the human population in the United States. This spatial related to simple national aggregate statistics such as percent
relationship can be augmented in a quantitative way by tak- of population living in urban areas, GDP per capita, and/or
*- 7 advantage of its spatial information. Saturated areas of energy consumption, the methods described could prove to
~imagery can be grouped into clusters. The area of these be very useful. If systematic relationships between the
clusters shows a strong correlation with the population of parameters described here and aggregate national figures can
the area covered. Earlier research suggests that the param- be identified, this method could be used in other parts of the
sters that influence this relationship will vary from one re- world where good spatially referenced census data are un-
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available. Then the DMSP imagery as it presently exists could
be incorporated into producing improved maps and datasets
of the distribution of the human population in many parts of
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Figure B. (a) A regression of the integration of all the DMSP pixels in each state versus the popula-
tion of each state. (b) A regression of the integration of all the DMSP pixels in each state versus
the natural log of the population of each state. {c) A regression of the integration of all the pMsp
pixels in each county versus the population of each county. (d) A regression of the integration of
all the DmsP pixels in each county versus the natural log of the population of each county.

(d)

the world where data of this nature are unavailable. The

~/DMSP imagery might also be used as a primary informant to a
smart interpolation program for modeling human population

distributions in areas where only large scale aggregate data
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are available. Present candidates for use as informants to
“smart interpolation” programs are city locations, coastlines,
topography, railroads, airports, harbors, and rivers. DMSP im-
agery clearly identifies most if not all major cities, populated
coastlines, and some rivers (a DMSP image of Egypt clearly
shows the twists and turns of the Nile river).

Further research utilizing DMSP imagery over areas with
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Figure 6. Log(area of urban cluster) versus Log(population
of cluster) for all the urban clusters identified from DMSP
imagery saturation.

varying degrees of economic development may provide valu-
able insights into identifying how these parameters vary. Per-
haps a systematic relationship can be identified between the
area of saturated DMSP pixels over cities, the population of
the cities, and some readily available aggregate national sta-
tistics such as GDP per capita, percent of population in urban
areas, per capita energy consumption, and/or characteriza-
tions of the distribution of wealth in the counties in ques-
tion. If such a relationship could be identified, then the DMSP
imagery could prove to be a powerful means of measuring/
modeling/monitoring the distribution of the human popula-
tion at a global scale.
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