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Abstract: The potential use of satellite observed nighttime lights for estimating carbon-

dioxide (CO2) emissions has been demonstrated in several previous studies. However, the 

procedures for a moderate resolution (1 km
2
 grid cells) global map of fossil fuel CO2 

emissions based on nighttime lights are still in the developmental phase. We report on the  

development of a method for mapping distributed (excluding electric power utilities) fossil 

fuel CO2 emissions at 30 arc-seconds or approximately 1 km
2 

resolution using nighttime 

lights data collected by the Defense Meteorological Satellite Program‟s Operational 

Linescan System (DMSP-OLS). A regression model, Model 1, was initially developed based 

on carbon emissions from five sectors of the Vulcan data produced by the Purdue University 

and a nighttime satellite image of the U.S. The coefficient derived through Model 1 was 

applied to the global nighttime image but it resulted in underestimation of CO2 emissions for 

most of the world‟s countries, and the states of the U.S. Thus, a second model, Model 2 was 

developed by allocating the distributed CO2 emissions (excluding emissions from utilities) 

using a combination of  DMSP-OLS nighttime image and population count data from the 

U.S. Department of Energy's (DOE) LandScan grid. The CO2 emissions were distributed in 
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proportion to the brightness of the DMSP nighttime lights in areas where lighting was 

detected.  In areas with no DMSP detected lighting, the CO2 emissions were distributed 

based on population count, with the assumption that people who live in these areas emit half 

as much CO2 as people who live in the areas with DMSP detected lighting. The results 

indicate that the relationship between satellite observed nighttime lights and CO2 emissions 

is complex, with differences between sectors and variations in lighting practices between 

countries. As a result it is not possible to make independent estimates of CO2 emissions with 

currently available coarse resolution panchromatic satellite observed nighttime lights.  

Keywords: CO2 grid, Nighttime satellite image, LandScan population grid 

 

1. Introduction  

    Since the beginning of the Industrial Revolution, the world‟s population has continued to 

increase, adding each subsequent billion in a span of fewer years than ever before. The world hit the 4 

billion mark in 1974, 5 billion just 13 years later, in 1987, and passed the 6 billion milestone 12 years 

later in 1999 [1]. The world population is likely to reach 7 billion in the latter half of 2011, again in a 

span of 12 years [2]. Population growth has led to land use change through intensification of 

agriculture, and improved contemporaneous increases in average standards of living have substantially 

increased energy use [1]. Changing land use and increased fossil fuel combustion for meeting the 

growing energy demand are the primary causes for augmented carbon dioxide (CO2) concentration in 

the atmosphere [3]. The anthropogenic contribution in global warming is indisputable and is evident in 

the rising global and ocean temperatures, extensive melting of snow and ice, and rise in the global 

average sea level [3]. The need for quantification of anthropogenic fossil fuel CO2 emissions in the 

atmosphere at finer spatial and temporal resolutions has been felt by the scientific and policymaking 

communities since the last decade [4]. From the policy-making perspective it is necessary to construct 

emission inventories in order to monitor and agree upon emission reduction targets [5]. Spatial 

distribution of emissions is also an important input to “atmospheric-inversion” methods, which 

combine CO2 concentration measurements with transport and process models to estimate land and 

ocean CO2 sources and sinks [6-9]. Anthropogenic CO2 emissions disrupt the equilibrium of the 

carbon cycle and makes it all the more important to monitor the spatial distribution of CO2 emissions.  

     Most of the existing inventory on the spatial distribution of CO2 emissions is available on a 

national basis. The U.S. Department of Energy‟s Carbon Dioxide Information Analysis Center 

(CDIAC) and the International Energy Agency (IEA) provide a global database of CO2 emissions for 

countries. The national geographic distribution of CO2 emissions has been disaggregated to finer 

resolutions (1˚ grid resolution) using population density grids as proxy measures [10-13]. Although the 

population density grid provides a reasonably good proximate measure of CO2 emissions at a spatial 

resolution of 1˚, it is not capable of providing satisfactory maps depicting geographic distribution of 

CO2 emissions at a resolution finer than this. This is because the population density grids do not depict 

transportation links and emissions from power stations. Moreover, the census data on which these 
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population density grids are based are collected at specific spatial units and disaggregating these data to 

the source regions is problematic [13].  

     From a satellite remote sensing perspective, it is possible to measure the CO2 concentration in the 

atmosphere at coarse spatial resolution using high spectral resolution infrared interferometer data.  

Examples of such systems include the Japanese Greenhouse Gas Observing Satellite (GOSAT) and 

NASA‟s planned Orbiting Carbon Observatory (OCO). With data from these systems the CO2 signal 

from major urban centers are diffused and spatially offset from the sources due to the coarse spatial 

resolution, atmospheric transport, mixing, and retention of CO2 in the atmosphere.  Thus it is difficult 

to discern increases or decreases in CO2 emissions from specific cities or towns from systems such as 

GOSAT by themselves. Application of inversion methods to detect changes in fossil fuel carbon 

emissions would require surface maps of fossil fuel CO2 emissions.  There are databases that list the 

locations and estimated emissions for electric power utilities (e.g. Carbon Monitoring for Action 

“CARMA”). This leaves the spatial distribution of non-point sources (from vehicles, homes and 

businesses) as a major gap in the mapping of fossil fuel CO2 emissions that would enable inversion 

modeling changes in emissions based on GOSAT or OCO style data.     

     The Defense Meteorological Satellite Program‟s Operation Linescan System (DMSP-OLS) 

satellite-observed nightlight data acts as a suitable proximate measure for mapping the distribution of 

CO2 emissions at a finer spatial resolution. Elvidge et al. [14] was the first to identify the correlation 

between lit area of lights and CO2 emissions. Doll et al. [15] built upon this relationship and created 

the first global grid of CO2 emissions at 1˚ x 1˚ resolution. A 6-month 1-kilometer stable light 

composite acquired between October 1994 and March 1995 was used in this study. Country level 

relationships between lit area and CO2 emissions were used to create global maps of these parameters. 

This map was then compared to CDIAC‟s CO2 emissions map. Comparison with CDIAC‟s CO2 

emissions map showed that the emissions map created from the nighttime lights resulted in an 

underestimation of CO2 emissions for most countries. However, the nighttime lights image did a 

superior job in mapping the spatial distribution of the emissions [16]. Under- and over-estimation of 

CO2 emissions predicted from the nighttime image is expected because countries usually have more or 

less emissions than what is predicted from the nighttime lights, as the lights and CO2 emissions do not 

always have a direct linear relationship. This was observed in the case of many of the former Soviet 

Republics by Doll et al. [15]. The authors noted that many of the former Soviet Republics appeared to 

have more emissions than what was predicted from the nighttime lights [16]. 

    Other recent efforts at developing a fine resolution CO2 emissions map is the one by Rayner et al. 

[17].They developed a “model-data synthesis” approach called the “Fossil Fuel Data Assimilation 

System” (FFDAS). Using two main datasets – the gridded population data and satellite observed 

nighttime lights they produced global fossil fuel CO2 emission fields based on the Kaya identity. 

Realizing the saturation of the nighttime lights as a major problem in areas of high light intensity, they 

developed a „global correction factor‟ which was used to correct the saturation errors in the nighttime 

lights image. Then, these „corrected‟ spatial data were used to create the fine resolution CO2 emissions 

map.  

    Oda and Maksyutov [13] have developed a global high resolution annual CO2 emission inventory 

for the years 1980-2007, named Open-source Data Inventory of Anthropogenic CO2 emission 
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(ODIAC) to inform the observational data collected by satellites such as the Japanese Greenhouse gas 

Observing SATellite (GOSAT), especially for CO2 emissions regional flux inversions study. They 

estimated national emissions using global energy consumption statistics. Emissions from power plants 

were estimated separately using the Carbon Monitoring for Action (CARMA) database. The CARMA 

CO2 emissions were directly mapped on power plant locations using the coordinate information, and 

the residual emissions (total emissions minus power generation emission) were distributed using the 

nighttime lights image as a proxy. Since the nighttime image is available in 30 arc-second grid 

(approximately 1 km), the CO2 emission map was also mapped at a resolution of 1 km
2
. In order to 

correct for the saturation of lights in the city centers in the stable light images, Oda and Maksyutov 

[13] obtained radiance values from the 1996-97 radiance-calibrated nighttime image, and using a 

conversion equation converted the digital number (DN) values between 0-254 for all the stable light 

images of the years 1980-2007 to radiance values. Oda and Maksyutov [13] determined the spatial 

distribution of emissions based on a linear correlation between nightlights and CO2 emissions, and also 

assumed it to be uniform over different countries, though in actuality the relationship maybe strongly 

country-dependent. They have discussed these drawbacks in their paper.  

    Gurney et al. [18] at Purdue University have created a Vulcan U.S. fossil fuel CO2 emissions 

inventory at spatial scales of 10 km and 0.1 degree and at an hourly time scale for the year 2002. The 

Vulcan dataset was developed based on fine scale reported inventory by individual source economic 

sectors, and is perhaps the best available carbon emissions inventory available for the U.S. at such a 

fine spatial and temporal resolution. The Vulcan dataset will be discussed in greater details in a later 

section.  

    In this paper, we have built upon the previous efforts at creating a global CO2 emissions grid from 

the nighttime satellite image and population grid and have tried to address some of the drawbacks of 

the previous studies. Two separate models were built, Model 1 and Model 2. Model 1 was developed 

based solely on the statistical correlation between the nighttime lights and selected Vulcan sectors. The 

coefficient derived from Model 1 was applied to the nighttime lights of the world to estimate global 

CO2 emissions. Since the Vulcan emissions data for the U.S. is the best available fine resolution data 

for any country of the world, it was hypothesized that the coefficients derived through Model 1 when 

applied to the global nighttime image would provide fairly accurate estimations of CO2 emissions for 

other countries as well. However, when the aggregated CO2 emission estimates for the countries and 

states of the U.S. (hereafter, will be referred to as administrative units) were compared to the official 

non-utility CO2 emission values, they were seen to have been underestimated for most of the 

administrative units. This led to the development of Model 2, which allocates CO2 emissions using a 

combination of DMSP nighttime lights and DOE Landscan population count data. Model 2 was 

developed by distributing the official non-utility CO2 emission values into two parts – emission from 

areas with DMSP detected lighting and emission from the dark areas of the world.  It was assumed that 

the per-capita CO2 emissions from the dark areas of the world were one-half of the per-capita 

emissions from the lit areas. The estimates of CO2 emission derived from aggregation of the grid cell 

values of Model 2 provided much better estimates of the official CO2 emission values.  
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2. Data Sources  

2.1. Nighttime lights imagery   

     In Model 1, the DMSP-OLS nighttime image of 2000 was used to calculate the light intensity 

values for all the lit areas of the U.S. corresponding to the surface grid extent of the Vulcan dataset. For 

Model 2, the DMSP-OLS nighttime image was used to compute the sum of light intensity values of all 

the administrative units, demarcate the population in the lit and dark areas of the world, and to 

distribute the estimated CO2 emissions from the lit areas. A merged stable lights and radiance-

calibrated image of 2000 was used in this study (Figure 1). The National Geophysical Data Center 

(NGDC) of the National Oceanic and Atmospheric Administration (NOAA) has been archiving and 

processing Defense Meteorological Satellite Program‟s Operational Linescan System (DMSP-OLS) 

nighttime lights data since 1994. The stable lights data of 2000 were composited from hundreds of 

cloud-free orbits for the year 2000, with the ephemeral light sources, such as fires and lightning 

removed [19]. The stable lights data suffer from saturation of light intensity values in the brightly lit 

city centers. The radiance-calibrated images, on the other hand, are produced by combining images 

collected at different gain settings (high, medium, and low), and thus can help to deal with the problem 

of saturation of city centers and also provide a much better view of the internal structure of cities [20]. 

Merging the stable lights and radiance-calibrated image of 2000 therefore makes it possible to include 

the best features of both types of nighttime lights dataset. For this study, the bright lights produced by 

gas flaring activities were masked out. The gas flares have very high light intensity values and it was 

believed that their inclusion in the global CO2 emissions estimation model from nighttime lights might 

give erroneous coefficient values. However, Elvidge et al. [21] have delineated global gas flares from 

nighttime light images for the years 1994 through 2008, and gas flaring activities also contribute to 

global carbon emission. Thus, separate coefficients will have to be developed for estimating carbon 

emissions from gas flaring activities in a future endeavor.  

    The spatial resolution of the smoothed nighttime lights data is 2.7 km. However, the images are 

geolocated to 30 arc-second grids, which is approximately 1 km
2
 at the equator. The latitudinal extent 

of the image is from 75˚N to 65˚S and the longitudinal extent is from 180˚W to 180˚E.  

 

Figure 1. Merged stable lights and radiance-calibrated DMSP-OLS nighttime image of 2000. 
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2.2. LandScan population grid  

    The LandScan population grid of 2000 was used in Model 2 to derive the total population in the 

lit and dark areas of the administrative units and also to distribute the estimated CO2 emission values in 

the dark areas of the world where there are settlements but no lights (Figure 2). The LandScan 

population dataset is a progressive series of spatially disaggregated global population count datasets 

that is produced by the Department of Energy at Oak Ridge National Laboratory. The LandScan model 

uses spatial data and image analysis techniques, in conjunction with a multi-variable dasymetric 

modeling approach, to allocate sub-national level census counts to each grid cell based on proximity to 

roads, slope, land cover, and other information within an administrative boundary. The cells represent 

ambient population counts in integer values. Ambient population takes into account the movement of 

people for work or travel and not only where people sleep. The dataset has a spatial resolution of 30 

arc-seconds [22]. In order to match the geographic extent of the nighttime image, the LandScan 

population grid was cropped to 75˚N (originally extends to 84˚N) and the southern latitudinal extent 

was cropped to 65˚S (originally extends to 90˚S).  

 

Figure 2. LandScan population grid of 2000. 

 

 

 

 

 

 

 

 

 

 

 

2.3. Vulcan data  

    The Vulcan fossil fuel carbon emission inventory provides a unique spatial depiction of the 

carbon emissions for key functional sectors. The currently available Vulcan dataset is for the year 

2002. It was produced at Purdue University along with other collaborators at Colorado State University 

and Lawrence Berkeley National Laboratory [18] and was based primarily on emission inventories. 

The data cover the continental U.S. at a spatial resolution of 0.1˚ x 0.1˚, reporting carbon emissions in 

units of tonnes of carbon /hour/ gridcell. The longitudinal direction has 650 gridcells, and the 

latitudinal direction has 280 gridcells and the time dimension has 8,760 timesteps. Inputs include 
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carbon emission inventory data from the Environmental Protection Agency (EPA), National Emission 

Inventory (NEI) and other data on mobile sources, power plants, and U.S. census data. All emitting 

locations are geocoded to latitude, longitude, and postal address. Emissions from fixed locations are 

divided among residential, commercial, industrial, utilities and cement production sectors. The 

transport sector contains three separate components: on road or mobile sector emissions (mobile 

transport using designated roadways), non-road emissions (e.g. boats, trains, all terrain vehicles 

(ATVs), and emissions associated with air travel (airports and airborne craft)) (Figures 3a-h).  

 

Figures 3 (a-h). Vulcan sectoral carbon emissions data, 2002 
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2.4. Official carbon-dioxide (CO2) emissions data – countries of the world and states of the U.S.   

    Official total CO2 emissions data, for the year 2000, for all the countries of the world were 

retrieved from United Nations Millennium Indicators website [23] although the primary data source is 

the Carbon Dioxide Information Analysis Center (CDIAC). CDIAC housed in the Department of 

Energy‟s (DOE) Oak Ridge National Laboratory is the primary source of climate change data. CO2 

emissions data in thousand metric tonnes for 206 countries were procured from CDIAC‟s data 

repository. Data on CO2 emissions for only two countries, Liechtenstein and Monaco, were taken from 

United Nations Framework Convention on Climate Change (UNFCC) as emission values for these two 

countries were not available from CDIAC‟s data repository [23]. 

    The total CO2 emissions data for the states of the U.S. were available from the U.S. 

Environmental Protection Agency‟s (EPA) website. The EPA provides state CO2 emission inventories 

from fossil fuel combustion, by end-use sector (commercial, industrial, residential, transportation, and 

electric power), in million metric tonnes of carbon dioxide from 1990 through 2007 [24]. We used the 

data of 2000 for our analysis.  

    The official CO2 emissions with the electric power plant emissions subtracted from them were 

used to compare the estimated CO2 emissions derived through multiplying the nighttime lights grid 

with the coefficient derived through Model 1, and in Model 2 the non-utility CO2 emissions were 

distributed using the nighttime lights grid and the LandScan population grid. The estimated CO2 

emissions data derived through Model 2 were also compared to the non-utility official CO2 emissions 

data (Figure 4). 

Figure 4. Official non-utility CO2 emissions data in thousand tonnes, 2000  
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2.5. Carbon-dioxide (CO2) emissions data from electric power plants - countries of the world and 

states of the U.S.   

    The nighttime lights satellite images can account for the distribution of the CO2 emissions but 

cannot fully articulate intense emission from major point sources, such as power plants [13]. Therefore, 

power plant CO2 emissions data were subtracted from official total CO2 emissions data for all 

administrative units. Power plant emissions data for all countries of the world were obtained from the 

Carbon Monitoring for Action (CARMA) [25], which is a huge database including information on the 

carbon emissions of over 50,000 power plants and 4,000 power companies worldwide. The data for all 

the available countries were downloaded. The data were in „short‟ or „U.S. tons‟, and were converted 

to metric tonnes by multiplying the values with the conversion factor of 0.90718474.  

    CO2 emissions from electric power plants for the states of the U.S. which were derived from EPA 

are the point source emissions. These emission values were subtracted from the total CO2 emissions 

(sum of commercial, industrial, residential, transportation) for the states of the U.S.  

3. Methods and Results 

    The estimated CO2 emissions grid of the world which was created from the DMSP-OLS 

nighttime lights image and the LandScan population grid were developed through experimentation 

with two models. Model 1, based solely on the correlation between the nighttime lights and the Vulcan 

dataset did not give satisfactory results, and so Model 2 was developed. The two models are discussed 

separately.  

 

  3.1 Model 1  

    Visual comparison of the Vulcan sector images indicates that several of the sectors are correlated 

to nighttime lights.  This includes the residential, commercial, industrial, mobile, and aircraft sectors.  

To investigate this further we used a stepwise linear regression to determine the best combination of 

Vulcan sectors for estimating the brightness of the DMSP nighttime lights.  The basis of this 

development is that the DMSP sensor measures lighting across multiple sectors, with lights detected in 

residential areas, along streets and road, in commercial centers, at airports and in industrial areas.  To 

develop this model we first aggregated the nighttime lights to match the spatial resolution of the 

Vulcan data.  A stepwise regression using the JMP statistical software indicated that the carbon 

emissions from the five sectors - mobile, commercial, residential, industrial, and aircraft sectors, which 

together account for about 57% of total carbon emissions in the continental U.S., provide the highest 

coefficient of determination (R
2
= 0.67) when regressed against the nighttime lights of the U.S. The 

other three sectors – utilities, non-road, and cement sector make only a slight contribution in increasing 

the R
2
 in the stepwise regression (Table 1). Because of the low correlation of the three sectors – 

utilities, non-road, and cement, with the nighttime lights of the U.S., they were excluded from the 

analysis. The five sectors which together provide the highest R
2
 with the lights of the U.S. were added 
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up (Figures 5 a-b) and a regression model (Model 1) was developed to derive the coefficient, which 

was applied on a global basis.  

     In reviewing the scattergam and regression line for Model 1 we found that the regression line 

was not passing through the dense core of data points that extend out from the origin.  We attribute this 

to the inclusion of small numbers of outliers which were skewing the regression. Based on the 

scattergram, we removed outliers including all carbon emissions above 1,000,000 tonnes were 

excluded, only nighttime lights value below 30 μW/cm^2/sr were included, and only non-zero values 

of carbon emissions and nighttime light values were taken into consideration. The regression Model 1 

provided an R
2
 of 0.55.  For this regression model the intercept was taken as zero implying that carbon 

emissions are zero when the light intensity value is zero (Figure 6).  

     The coefficient derived through Model 1 (β1US) was multiplied with the nighttime lights image of 

continental U.S., to derive the modeled carbon emissions grid of the U.S. Then in order to analyze the 

outliers for each of the five sectors, excess CO2 emissions were calculated by subtracting the modeled 

emissions from each of the five individual sectors. Examination of these difference images indicated 

that the model was systematically underestimating the CO2 emissions in several of the sectors.  To 

develop a metric for this underestimation we divided the computed excess of each of the sectors by the 

total carbon emissions of each of the sectors to calculate a percentage underestimation. The 

underestimation was highest for the mobile and industrial sectors (Table 1).  

 

Table 1. Coefficient of determination derived from the stepwise regression, percentage 

contribution of each sector to the total carbon emissions, and the underestimation 

percentages of each of the five Model 1 sectors 

Vulcan sectoral carbon emission  R
2
 

% contribution of 

each sector to the 

total carbon 

emissions 

% 

Underestimation 

Mobile  0.6433 27.94 20.43 

Non-road 0.3724 3.14  

Residential  0.3628 6.36 2.62 

Commercial  0.3116 4.12 7.38 

Aircraft 0.1398 1.19 6.25 

Industrial 0.0555 17.56 37.24 

Utilities  0.0130 38.81  

Cement 0.0011 0.87  

    

Aircraft+Mobile+Residential+Commercial+Industrial 0.6708 57.17  
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Figure 5. (a) Vulcan mobile, commercial, residential, aircraft, and industrial sectors added together;        

(b) DMSP-OLS Nighttime lights of the U.S., 2000. 

 

 

 

 

 

 

 

 

 

 

 

     The coefficient derived through Model 1 (β1US) was also multiplied with the light intensity value 

of each pixel (Lp) in the global nighttime lights grid and the value of 3.67 (ratio of the molecular 

weight of CO2 (44) to the atomic weight of carbon (12) = 44/12 = 3.67, as the Vulcan data is provided 

in terms of the mass of carbon atom) to get the estimated CO2 emission values for each 1 km
2
 pixel in 

the nighttime lights grid (CO2p′) (Equation1). The estimated CO2 emissions were then aggregated to the 

administrative units, CO2i′, where „i‟ corresponds to each administrative unit.  

  

 

 

 

 

 

a. Added mobile, commercial, residential, aircraft, and industrial emissions 

b. DMSP-OLS Nighttime lights of the U.S., 2000 
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Figure 6. Model 1 - The regression model of the nighttime lights of the U.S. and the Vulcan carbon 

emissions data of the five sectors (mobile, commercial, residential, aircraft, and industrial sectors) 

combined. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                         

 

                                                CO2p′ = β1US * Lp,                                              (1) 

where, CO2p′  = Estimated CO2 emission for each pixel p   

Lp = Light intensity value for each pixel p in the nighttime lights image 

β1US = slope coefficient derived through Model 1 (Value of  β1 US = 45169) 

 

    The CO2 emissions from electric power utilities reported by CARMA and EPA were subtracted 

from the official CO2 emission values obtained from CDIAC and UNFCC. Plotting the aggregated 

estimated CO2 emissions of the administrative units (CO2i′) against the non-utility reported CO2 

emission values (CO2i), provided a correlation coefficient of 0.86. However, the CO2 emissions were 

underestimated for most of the administrative units, except for a few (Figure 7).  

   

 

 

 

 

 

 

 

R
2
 = 0.55 
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Figure 7. Official non-utility CO2 emission values versus modeled (Model 1) CO2 emission values for 

the countries of the world and the states of the U.S. 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

3.2 Model 2 

    A single coefficient derived from the U.S. Model 1 resulted in underestimation of CO2 emissions 

for most of the countries and even most states in the U.S. We attribute this to variations in CO2 

emissions that are independent of the quantity of light emitted to the sky and variations in lighting use 

patterns between countries.  Similar results were alluded to in previous studies [13, 15].  Moreover, 

regressing the sum of lights against the official CO2 emission values (Figure 8) show that countries 

such as Canada are brighter compared to their CO2 emission values, whereas, countries such as China 

have higher CO2 emission than what is estimated from the nighttime light intensity values.  

 

 

 

 

 

 

 

 

 

 

 

R = 0.86 
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Figure 8. Regression relationship between sum of lights and official non-utility CO2 emissions for all 

countries and states of the U.S. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Furthermore, although the nighttime lights can identify the locations for the CO2 emissions from the lit 

areas of the world, there are more than 1.6 billion people living in areas with no DMSP light detections 

[26].   

As a result of these considerations, we began the development of a Model 2, which performs a 

spatial allocation of the reported CO2 emissions (minus the emissions from electric power utilities) 

based on nighttime lights and population count.  An attempt was made to use lights and population 

count together; however this regression yielded a negative slope for population and negative CO2 

emissions for many grid cells. To resolve this problem we developed a model which estimated CO2 

emissions in lit areas based on the DMSP nighttime lights and the CO2 emissions in areas without 

DMSP lights based on population count. We proceeded with the assumption that people living in areas 

with no detected DMSP lighting have half the CO2 emissions as people living in the lit areas of an 

individual country.   

     At first a mask of the lit areas of the world was created from the nighttime lights grid. This mask 

was overlaid on the LandScan population grid and the sum of population of the lit areas of each 

administrative unit was extracted (SOPLi). Similarly, a mask of the dark areas of the world was created 

from the nighttime image and was overlaid on the population grid to extract sum of population of the 

dark areas of each administrative unit (SOPDi). The non-utility official CO2 emissions of the 

R
2
 = 0.73  
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administrative units (CO2i) were distributed between the dark and lit areas based on the following 

equation (Equation 2).  

 

                                   CO2i = CO2Li +  CO2Di                                                          (2) 

CO2i = (SOPLi  * xi) +  (SOPDi * xi/2) 

xi = CO2i /(SOPLi + SOPDi/2) 

 

    Through Equation 2 the value of the variable „xi‟ for each administrative unit was derived. The 

variable xi was then multiplied with the sum of population in lit areas for each administrative unit i 

(SOPLi) and half of the variable xi, that is, xi/2, was multiplied with the sum of population in the dark 

areas for each administrative unit i (SOPDi). This provided the total CO2 emissions from the lit areas 

(CO2Li) and total CO2 emissions from the dark areas (CO2Di), respectively, for each administrative unit. 

(Equations 3 and 4).  

CO2Li = SOPLi  * xi                                    (3)                                                                                                                                                               

CO2Di = SOPDi * (xi/2)                                                 (4) 

     

 The CO2 emissions from the lit areas (CO2Li) were then divided by the sum of lights (in radiance 

units) for each administrative unit (SOLLi). This yielded the CO2 emissions per radiance unit for each 

administrative unit. Conversely, CO2 emissions from the dark areas (CO2Di) were divided by sum of 

population in the dark areas (SOPDi) to get CO2 emissions per person for the dark areas for each 

administrative unit. Finally, in order to distribute the CO2 emissions from the lit areas (and to create the 

grid of CO2 emissions from lit areas, CO2Lp′), each of the lit pixels of the nighttime lights grid (Lp) was 

multiplied by the CO2 emissions per radiance unit for each administrative unit, and to distribute the 

CO2 emissions from the dark areas (and to create the grid of CO2 emissions from dark areas, CO2Dp′) 

the population count in each pixel of the dark areas of the population grid (PDp) were multiplied by the 

CO2 emissions per person for the dark areas for each administrative unit (Equations 5 and 6).  

 

CO2Lp′ = (CO2Li/SOLLi)* Lp                       (5)                                                                                                                  

CO2Dp′ = (CO2Di/ SOPDi)* PDp                               (6) 

    These two separate CO2 emissions grid from the lit areas and the dark areas of the world (CO2Lp′ 

and CO2Dp′) were added up to create the final estimated CO2 emissions grid (CO2p′) (Equation 7, Figure 

9a).  

CO2p′ = CO2Lp′ + CO2Dp′                        (7) 

    The disaggregated CO2 emissions map represents values in tonnes assigned to 1 km
2
 pixels, or 

CO2 emissions in tonnes/km
2
 /year. In the disaggregated map the ocean pixels have a value of 0. Also, 

pixels in the inaccessible areas of the world, such as the high mountainous areas and deserts, with no 

population or nighttime lights also have a value of 0. The major cities and urban areas of the world 

have CO2 emissions greater than 500 tonnes/ km
2
 /year. Areas of the world which have population but 
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no lights have CO2 emissions less than 50 tonnes/km
2
 /year. Figure 9(a) shows the CO2 emissions grid 

of the world, and Figures 9(b), (c), (d), and (e) show CO2 emissions of North-eastern United States, 

Japan, Eastern China, and Northern India, respectively.  

 

Figure 9 (a-e). Estimated CO2 emissions grid in tonnes/km
2
/year 
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    We have validated the disaggregated map of CO2 emissions, showing emissions in each pixel 

(CO2p′) by aggregating it to the level of the administrative units (CO2i′) and comparing it to the official 

non-utility CO2 emission values (CO2i). The graph of the estimated CO2 emissions plotted against the 

official CO2 emission values shows how close the estimated values are to the official values (Figure 

10). 

 

Figure 10. Official non-utility CO2 emission values versus modeled (Model 2) CO2 emission values for 

the countries of the world and the states of the U.S. 

 

 

 

 

 

 

 

 

 

5. Discussion and Conclusion 

    Two separate models were built for creating a disaggregated map of global non-utility CO2 

emissions. The first model was based on a regression relationship between the nighttime lights of the 

U.S. and the combined carbon emissions of the five sectors (residential, commercial, aircraft, 

industrial, and mobile sector) of the Vulcan data. The slope coefficient derived through this 

1:1 
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relationship (CO2 emissions per radiance) was multiplied with the global nighttime lights radiance data 

and this provided the estimated CO2 emissions grid. However, when this estimated CO2 emissions grid 

was aggregated to the level of the administrative units it was seen that CO2 emissions were 

underestimated for almost all administrative units. Thus, it was realized that a single coefficient 

derived through a regression relationship developed for the U.S would not enable accurate estimations 

of CO2 emissions for all administrative units. Based on the Vulcan data we found the underestimation 

to be highest (Table 1) in the industrial and mobile (streets, roads and highways) sectors. We attribute 

this underestimation in part to the inability of a single coefficient to adequately represent the 

differences that exist between carbon emissions across multiple sectors.  For instance, on a per square 

kilometer basis the CO2 emissions from residential areas is undoubtedly lower than the emissions from 

a heavily trafficked highway of an industrial facility. Another aspect of the underestimation is that 

Model 1 assumes that the use of lighting in each country is comparable to the U.S.  The vast 

underestimation of CO2 emissions in China under Model 1 suggests that China uses far less lighting per 

person than the U.S. Previous studies [19, 26] have indicated that there are variations in lighting types, 

lighting fixtures, and lighting preferences that affect the brightness of satellite observed nighttime 

lights.   In order to address these drawbacks Model 2 was developed.  

    To address these shortcomings with the available data sources we developed Model 2, which uses 

nighttime lights grid and the LandScan population grid to model the spatial distribution of reported 

CO2 emissions (minus those associated with electric power utilities). The use of LandScan population 

grid in estimating CO2 emissions proved to be advantageous because population count can serve as a 

proxy for estimating CO2 emissions in areas in the world which have no satellite detected lighting. 

Furthermore, since in the LandScan population model, sub-national level census accounts are allocated 

to each grid cell based on proximity to roads, slope, and land cover; transportation links are depicted in 

greater details in the LandScan population grid. Thus, inclusion of the LandScan population grid in the 

model for estimating CO2 emissions ensured the estimation of emissions from the transport linkages. 

These road linkages contributed to the outlier percentages from the Vulcan mobile sector emissions 

when the modeled carbon emissions grid of the U.S was created from its nighttime lights. Model 2 was 

developed with the assumption that per capita CO2 emissions from the dark areas of the world were 

one-half of the per capita emission in the lit areas. On the basis of this assumption, the total non-utility 

official CO2 emissions were distributed into the lit and the dark areas of the world using the nighttime 

lights image and the LandScan population grid. In Model 2 the total CO2 emissions are constrained to 

match the reported values minus the component associated with electric power utilities. 

It is important to note that DMSP nighttime lights indicate  the spatial distribution for the majority 

of CO2 emissions but that they cannot articulate the variability that exists between sectors. If the CO2 

estimation coefficient is tuned to work well for residential and commercial sectors, the emissions for 

industrial and mobile will be underestimated.  With higher spatial resolution and multispectral 

nighttime lights it would be possible to distinguish the lighting from residential, commercial/industrial, 

and transportation sectors [27, 28].  While such a Nightsat sensor has not been built, the prospects for 

making improved CO2 emission grids with such data are clear. It may even be possible to estimate the 

CO2 emissions from electric power utilities with Nightsat data. Electric power utility emissions 

accounts for 40% of all carbon emissions in the United States and about one-quarter of global 
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emissions [25]. Thus, by excluding the utility emissions, the CO2 emissions grid created from the 

nighttime lights image and population grid actually maps the distribution of about 75% of all 

distributed CO2 emissions.  

     The method developed here is not an independent method for estimating CO2 as official CO2 

emission values were used to set the coefficients for the spatial allocation performed in each 

administrative unit. However, it is an easy and quick method for estimating and mapping CO2 

emissions at a fine spatial resolution. Moreover, the availability of radiance-calibrated nighttime lights 

image has made it possible to map variability in distribution of CO2 emissions into bright urban cores, 

where previous nighttime lights products contained saturated data values.  The NGDC at NOAA is 

currently producing a radiance-calibrated time series for the years 1996-97, 1999, 2000, 2003, 2004, 

and 2010. The method developed in this paper could be used to create disaggregate maps of CO2 

emissions for all of these years. However, it should be noted that the lack of on-board calibration for 

the DMSP nighttime visible band complicates the direct comparison of the data values across the time 

series. 

    The greatest advantage of creating a disaggregated map of CO2 emissions is that it can be 

aggregated to different environmental, physical, and socio-economic units of analysis and can be easily 

integrated with other physical and environmental data available in gridded format. Such a fine 

resolution disaggregated map of CO2 emissions would also aid in CO2 emissions regional flux 

inversions studies. These model outputs can also inform the monitoring of the progress of countries as 

they move towards achieving emission reduction targets.  

    Although not an entirely flawless method, the second model developed in this paper provides a 

simple, useful, and inexpensive technique to create a fine resolution CO2 grid of the entire planet. Our 

future endeavors will include testing this methodology for estimating CO2 emissions for other years 

and also to include the CO2 emissions from gas flaring [21].  
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