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Sea turtles nesting beaches are found near-globally, and the ability to characterize beaches by topographic
and bathymetric features has remained largely out of reach. Twenty-one beaches and their offshore areas
in southern Florida used by three sea turtle species (Caretta caretta, Chelonia mydas, and Dermochelys
coriacea) were compared using topographic measures derived from LiDAR data. Variables such as slope, as-
pect, rugosity, and topographic and bathymetric position indices (TPI and BPI) were extracted from the
LiDAR surface raster to characterize beaches used by sea turtles; stepwise multiple regression was used to de-
termine which variables are most strongly associated with turtle nesting density. The three species exhibited
tolerances for similar ranges of values in measured variables; beaches with values outside these tolerances
were not used for nesting. Beach nesting density can be successfully modeled for all three species, but differ-
ent topographic measures were important in each model. This work demonstrates the potential of high spa-
tial resolution topographic datasets to successfully characterize coastal habitat for ecological applications.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Many coastal species are at risk due to habitat loss from beach con-
struction and sea level rise. Sea turtles are particularly vulnerable, as
all nesting efforts occur on low-lying beaches. Past research efforts,
though intensive, have failed to determine exact requirements by dif-
ferent marine turtle species for nesting beaches. In addition, the char-
acteristics of beaches and nesting sites within beaches used in by the
seven different species vary globally, and few commonalities appear
to exist. Green turtles, Chelonia mydas, for example, appear to prefer
nesting near or within vegetation, as roots provide structure in nest
building (Brown & Macdonald, 1995; Bustard, 1972; Bustard &
Greenham, 1968; Chen et al., 2007). Leatherback turtles, Dermochelys
coriacea, which occasionally nest on the same beaches as green turtles,
appear to prefer to nest in the open sand (Whitmore & Dutton, 1985).
There is limited research on nesting preferences for other species.

Several biophysical elements that may influence nesting preference
have been studied in depth in situ, including sand characteristics, mois-
ture, salinity, beachwidth and length, amount of vegetation, and temper-
ature (e.g. Bustard & Greenham, 1968; Mortimer, 1990; Stancyk & Ross,
1978). Morphological characteristics of beaches, such as slope and the re-
lated offshore approach, havebeen the addressed in studies, but not to the
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sameextent as the above characteristics. Horrocks andScott (1991) found
that nest elevation above sea level was positively related with hatching
success for hawksbill turtles, Eretmochelys imbricate. Their study also
found that on beaches with less steep slopes, hawksbills nested further
from the high tide line, which suggests that hawksbills prefer to nest at
a certain mean elevation above sea level, and therefore the females
will travel further inland in order to reach the optimum elevation
value, even if it means traveling greater distances. Provancha and
Ehrhart (1987) reported that segments of beaches with higher
slopes had higher nest densities than beaches with lower slopes
for loggerhead turtles, Caretta caretta. The beaches with the highest
slopes, and thus the highest nesting densities, had more gradual
drop-offs offshore. The beaches with lower slopes and lower nesting
densities had near shore drop-offs bordered by shoals to the one
side. The researchers also found that slope and width of nesting
beaches were inversely correlated, and that offshore approach may
be related to beach slope. As a result of these findings, the re-
searchers suggest that offshore characteristics may influence a sea
turtle's choice to nest on a nesting beach.

Mortimer (1982) also hypothesized that slope and offshore con-
figuration of the beach were possibly more important than sand
grain properties, although the values were never quantified. Howev-
er, it is important to note that physical requirements of the different
species and even individuals within the same species may determine
beach selection. Whitmore and Dutton (1985) suggested that because
leatherback turtles are much larger than green turtles, female
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Table 1
List of beaches, and their associated counties and area, included in the study.

Beach Name County Area (km2)

Boca Raton Beaches Palm Beach 0.390
Deerfield/Hillsboro Beaches Broward 0.248
Delray Beach Palm Beach 0.338
Ft Lauderdale Beach Broward 0.602
Golden Beach Miami-Dade 0.109
Gulfstream Palm Beach 0.237
Gulfstream Park Palm Beach 0.004
Highland Beach Palm Beach 0.016
Hobe Sound NWR Martin 0.238
Hollywood/Hallandale Beach Broward 0.583
John U. Lloyd State Park Broward 0.267
Jupiter Island Martin 0.027
Kreusler Park Palm Beach 0.013
Lake Worth Municipal Beach Palm Beach 0.017
Lantana Palm Beach 0.007
Macarthur State Park Palm Beach 0.003
Ocean Inlet Park Palm Beach 0.010
Ocean Reef Park Palm Beach 0.013
Pompano/Lauderdale-by-the-Sea Broward 0.617
Singer Island Palm Beach 0.076
Sloan's Curve Palm Beach 0.050
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leatherbacks may prefer to nest closer to shore than female green tur-
tles simply due to energy constraints.

Better methods to extract topographic information from coastal
areas are a current need in ecological studies. Digital Elevation Models
(DEM) are commonly used, due to their relatively low (or no) cost
when procured from governmental sources and their widespread geo-
graphic availability. However, the spatial and the temporal resolution
of DEMs are dependent upon the original data provider, and the spatial
resolution in particular can be too coarse for small study areas (e.g., the
Shuttle Radar TopographyMission (SRTM)DEMhas a spatial resolution
of 90 m globally, and 30 m for the United States).

Light Detection and Ranging (LiDAR) data, which uses laser pulses to
obtain elevation information, have been used successfully when other
commonly used DEMs are not deemed adequate due to their spatial or
temporal resolution. Of particular interest to researchers in coastal areas
is the ability to quickly highlight small elevational differences across the
coastal landscape. Stockdon et al. (2009) utilized LiDAR data to identify
dune crests in hurricane-prone areas, which can be used in creating vul-
nerabilitymaps to aid in disaster planning. Dune erosion fromgrazing ac-
tivities can also be quantified with LiDAR (De Stoppelaire et al., 2004),
and low-lying areas prone to inundation from sea level rise aremore eas-
ily identified with LiDAR than other data sources (Gesch, 2009).

Bathymetric features are also possible to visualize using LiDAR
with a dual laser system, instead of the single laser used for topo-
graphic mapping (Quadros et al., 2008). Aircraft-based LiDAR sensors,
in particular, are a more effective method of mapping offshore areas
without the need of boat-mounted sonar or laser methods, which
can damage shallow water ecosystems (Parson et al., 1997). Collin
et al. (2008) used LiDAR to map the shallow water seabed to aid in
habitat identification. Also pertaining to off-shore habitat mapping,
Zawada and Brock (2009) illustrated that the topographic complexity
of coral reefs can be quantified using LiDAR data.

Few studies have compared multiple sea turtle nesting beaches to
one another; Mortimer (1990) remains one most often-cited. The lack
of studies that compare multiple beaches, topographically and bathy-
metrically, for multiple species represents a gap in the literature. This
gap is largely a result of the time-intensive nature of gathering eleva-
tion data in the field, and the difficulty of collecting bathymetric data
in general. The relatively recent availability of LiDAR data now enables
researchers to conduct elevation-based studies that were previously
logistically impossible.

The goals of this research are to investigate the following two
questions using LiDAR data and annual turtle nest surveys: (1) Do
beaches used by the same species show similar morphological char-
acteristics, and to what degree do these characteristics overlap be-
tween species? (2) Can morphological characteristics be used to
model sea turtle nesting density? Although the study area will be lim-
ited to southeastern Florida, the methods are assumed to be general-
izable to other areas of interest.

2. Methods

Beaches were used as the basic spatial unit of analysis in this
study, rather than the areas directly surrounding nests. Although
the environment in the immediate vicinity of a nest provides insight
into why a female chooses to nest at that particular site, and may re-
veal differences between individuals and within beaches, beach-wide
comparisons can highlight similarities and differences across larger
geographic areas. In addition, because beaches are used by different
species to varying degrees, allowing comparisons at a beach level
can potentially highlight a broader range of suitability values for
and between species. Finally, data on turtle nesting density were
only available at the beach level.

Nesting information was obtained from the Florida Fish and
Wildlife Conservation Commission (2008). The data contain the num-
ber of nests per beach per year by species, dates of nesting seasons,
areas of beach surveyed, and the number of days per week spent sur-
veying. Beaches were included in the current study if monitoring ef-
forts were conducted between 1998 and 2005 with a relatively
consistent sampling area and effort. For example, beaches were only
included if the surveyed area of a beach varied less than 0.25 km be-
tween years and if the number of surveying days conducted per week
remained constant between years. In addition, only those beaches
with LiDAR coverage within the boundaries for the bathymetric and
topographic mapping project by the United States Army Corps of En-
gineers were considered. On the east coast of Florida, a total of 21
beaches were ultimately included in this study (Table 1, Fig. 1).

Each beach was divided into two areas, onshore (from the
inland-most points still classified as beach to the shoreline) and off-
shore (from the shoreline to a specified point ocean-ward) for analy-
sis. The onshore and offshore areas were used to extract values from
the LiDAR-derived rasters, which were then compared across beaches
and species. The steps for these processes are detailed below.

LiDAR data were procured from the NOAA Coastal Services
Center's Digital Coast website in UTM Zone 17 projection with
NAD83 horizontal and NAVD88 vertical datum, LAS 1.1 file format.
The data originated from a 2006 topographic and bathymetric map-
ping project from the United States Army Corps of Engineers and
were collected by the Joint Airborne LiDAR Bathymetry Technical
Center of Expertise (JALBTCX) using the Compact Hydrographic Air-
borne Rapid Total Survey (CHARTS) system. LiDAR data collection
flights were flown from December 2005 to February 2006, which
corresponded to roughly 1 to 2 months after the nesting season of
2005 was completed. The LiDAR flights were typically conducted at
low tide (Sylvester, 2011), and the timing of all LiDAR flights allowed
for covering summer accretion before winter storm erosion. Vertical
accuracy is 0.30 m within two standard deviations, horizontal accura-
cy is 3.0 m within two standard deviations, and the nominal ground
spacing of LiDAR samples is 2.0 m.

The LiDAR cloud data were converted to rasters with varying pixel
sizes in order to determine the pixel size that resulted in the best bal-
ance between a low percentage of empty cells (i.e. cells with no LiDAR
data points) and a minimal amount of data point averaging, which
would result in a loss of detail included in the original data. Three
sample areas with approximately 400 by 400 m dimensions were
chosen from Delray, Golden, and Lantana beaches. For each sample
area, LiDAR cloud data were converted to pixels with spatial resolu-
tions varying between 2 and 10 m using the Boise Center Aerospace
Laboratory (BCAL) LiDAR toolset, as described in Streutker and



Fig. 1. Counties in Florida with beaches included in the analysis.

127K.H. Yamamoto et al. / Remote Sensing of Environment 125 (2012) 125–133
Glenn (2006), available as an Exelis Visual Information Solutions ENVI
add-on (http://bcal.geology.isu.edulEnvitools.shtml). Points with an
elevation of five or more standard deviations from the median value
for the dataset were considered outliers and not included in the raster
datasets. The percentage of empty cells in each sample area was cal-
culated for each pixel size (Fig. 2). As expected, the percentage of
empty cells decreased as the pixel size increased. By the 9 m spatial
resolution, there were no empty cells remaining. Based on these re-
sults, a pixel size of 5 m for all beaches was chosen for this study, as
5 m resolution minimized empty cells without overly smoothing
the original data.

Aside from the expected derived variables, such as mean eleva-
tion, slope, aspect, and orientation, two additional variables are com-
monly calculated to characterize features and highlight changes in
elevation across a landscape. Terrain Positional Index (TPI) and the
related Bathymetric Position Index (BPI) are derived from slope cal-
culations and illustrate how a pixel in a surface is located relative to
Fig. 2. Percent of no-data cells versus pixel size of raster image generated from LiDAR
data (example from Delray Beach, Palm Beach County.).
other pixels in the raster (Iampietro & Kvitek, 2002; Weiss, 2001).
This relative location (i.e. higher or lower than a pixel's neighbors)
can be calculated using a number of nearest neighbor algorithms, in-
cluding the use of circles or rectangles (Lundblad et al., 2006).

Surface roughness, or rugosity, is also commonly used in bathy-
metric studies. Rugosity is defined as the ratio of the surface area to
the planar area (Jenness, 2011). Areas with a rugosity value of 1 are
flat, indicating no difference between the surface area and the planar
area ratio. Areas with rugosity values greater than 1 have some de-
gree of roughness, with higher values indicating a greater degree of
roughness. For example, a Himalayan peak will have a higher rugosity
value than a cornfield in Iowa representing the same ground area. Ru-
gosity calculated from LiDAR-derived surfaces corresponds well with
in-situ measurements for finer spatial resolutions (Wedding et al.,
2008).

Depth, slope, TPI/BPI and rugosity are useful in the creation of a
benthic classification system of topographic features (Lundblad et al.,
2006). On the ecological side, these variables have been used to iden-
tify and predict benthic biotopes (Buhl-Mortensen et al., 2009), to
identify benthic habitats (Wilson et al., 2007), and create rockfish pre-
dictivemodels (Iampietro et al., 2008). TPI alone has been used to clas-
sify topographic features, such as valleys and canyons, (Weiss, 2001),
or combined with rugosity to classify seafloor habitats (Iampietro &
Kvitek, 2002).

The resulting elevation rasters were used to construct slope ras-
ters, measured in degrees, and TPI/BPI, rugosity, and aspect raster
datasets. Although the length and location of the beaches were in-
cluded in the data provided by the Florida Fish andWildlife Conserva-
tion Commission (FWC), the defining boundaries of the beaches as
provided by the FWC did not always match up with the LiDAR data
from 2006. As a result, the St Johns River Water Management
District (SJRWMD) (2000) dataset was used to delineate the coastal
areas for consistency to subset the LiDAR data into beach areas,

http://bcal.geology.isu.edulEnvitools.shtml


Table 2
Variables and abbreviated names used in the analysis.

Variable Measurements

Onshore elevation Minimum, maximum, mean, standard deviation
Offshore elevation Minimum, maximum, mean, standard deviation
Onshore slope Minimum, maximum, mean, standard deviation
Offshore slope Minimum, maximum, mean, standard deviation
Aspect onshore Mean, standard deviation
Aspect offshore Mean, standard deviation
TPI onshore Minimum, maximum, mean, standard deviation
BPI offshore Minimum, maximum, mean, standard deviation
Rugosity onshore Minimum, maximum, mean, standard deviation
Rugosity offshore Minimum, maximum, mean, standard deviation
Offshore shoals Area
Beach length Total
Beach width Minimum, maximum, mean
Beach orientation Total
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similar to the methods implemented by Long et al. (2011). This
dataset originates from 1:12,000 United States Geological Survey
(USGS) color infrared (CIR) digital orthophoto quarter quadrangles
(DOQQs) and represents 1999 land use and land cover for Florida as
polygons. Due to the differences in dates of data acquisition, the
boundaries of beach areas from the SJRWMDwere overlaid on the in-
tensity images from the LiDAR data for comparison. In the vast major-
ity of cases, the areas designated as beaches in the SJRWMD dataset
could be used to delineate the beaches, as the 1999 demarcations
still applied. For those areas that did not match well, the LiDAR data
were used to adjust the 1999 boundaries. The transition from sand
(beach) to vegetated areas with buildings (non-beach) was relatively
easy to identify using the LiDAR intensity surfaces. Piers and other
beach structures were not included in the analysis and were removed
from the polygons, as they skew the onshore and offshore heights and
slope measurements.

Once the onshore delineations were established, the shoreline and
the offshore boundaries were generated. As a result from waves
breaking on the land, the LiDAR data contained gaps (or no data) at
around 0 m elevation mean sea level (MSL). This area of no data,
when digitized and overlaid onto Google Earth imagery (date 12/
30/2005), corresponded well with the shoreline in the images. Thus,
the first no-data pixels in a direction perpendicular to the beach
area were designated as the shoreline.
Fig. 3. Example of LiDAR elevation raster with a portion of Deerfield/Hillsboro Beaches
represented. The onshore and offshore polygons, shown in white, were used to extract
variables from the elevation and elevation-derived raster datasets. The elevation ramp
only depicts the range for the raster contained by the polygons.
In order to determine the offshore boundaries, the bathymetric
dataset was subset to include the area from the shoreline to 1000 m
offshore. This distance was chosen to best compare offshore depth
and other variables between beaches, because beaches had different
widths of offshore areas charted with LiDAR. Although many of the
LiDAR datasets contained data far beyond 1000 m, some beaches
did not, and using the entire bathymetric dataset would potentially
skew the results, as the beaches with data for the farthest distance
offshore would likely have the greatest depths.

Thus, for each beach, two polygons represented areas of interest:
offshore and onshore (Fig. 3). In addition, rasterized LiDAR intensity
surfaces were generated for each beach with elevations for both off-
shore and onshore areas. These elevation surfaces were used to gener-
ate rasters representing slope and aspect for each pixel. TPI/BPI and
rugosity raster surfaces were used to further represent surface charac-
teristics. The TPI/BPI grids were created using the CorridorDesigner ex-
tension for Esri's ArcMap 9.3 (Majka et al., 2007) with the circle filter
and a radius of 4 pixels to capture changes in the landscapes without
overly averaging values (4 pixels was chosen as it creates a neighbor-
hood of 20 m fromwhich to determine the TPI/BPI values, which allows
for a compromise between small and large neighborhood averaging).
Rugosity grids were produced with the DEM Surface Tools for ArcGIS
9.x (Jenness, 2011). The elevation, slope, aspect, TPI/BPI, and rugosity
rasters were all clipped to only include the offshore and onshore areas
of interest. Other variables, such as orientation (measured in degrees
as oriented to the ocean), length, and width of the beach, were
recorded. The presence of offshore shoals and their area were also
noted, as the presence of shoals has been attributed to lower nesting
densities in C. caretta (Provancha & Ehrhart, 1987). All of the above
measurements were therefore used to extract a number of variables
for each beach (Table 2). Because the compass direction orientation
and aspect are cyclical variables, they were transformed to their
non-cyclical forms for eastness using the sine function (Austin et al.,
1990; Piedallu & Gegout, 2008; Pierce et al., 2005).

Similarities between beaches with a similar number of nests per km
were evaluated to determine whether beaches with a higher degree of
use were characterized by different ranges of morphological variables
than beaches with less use. Jenks natural break optimization divisions
were applied to the turtle nesting density dataset to assign each beach
into one of three classes for each species: high, medium, and low
nesting densities. This method divides the data into a predetermined
number of classes by minimizing the average deviations from the
class mean (Jenks, 1967). These ranks were used to compare beaches
of similar nesting usewithin and between species based onmorpholog-
ical variables.

The variables for each rank were combined. The minimum, maxi-
mum, and average of the mean values were calculated for each vari-
able for each rank of the species. Beaches with the highest degree of
use for each species were expected to have the narrowest ranges for



Table 3
Jenks divisions for average number of nests per km for each species. The values repre-
sent the upper limit for each category.

Rank low Rank med Rank high

C. caretta 76.63 196.05 372.84
C. mydas 9 21.32 62.33
D. coriacea 1.11 3.36 7.19
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the most important variables that determine beach use, converging
on an “ideal” range for the nesting preferences of that species. Con-
versely, beaches with less use by a given species were expected to
have wider ranges for the important variables, representing the de-
gree to which a beach would be considered suitable for nesting but
not able to support larger numbers of nests.

To determine if the beaches with the highest use for each of the
species (rank=“high”) were characterized by morphologic measures
that were statistically different from one another, ANOVA tests were
run for offshore and onshore elevation, slope, TPI/BPI, rugosity, and
aspect, and beach length, width, and orientation using the mean of
the means and the square root of the average of the standard devia-
tions for each variable.

To determine which variables were most strongly associated with
turtle nesting density for each species, stepwise multiple linear re-
gression was conducted using SAS Institute Inc.'s JMP Pro 9.0. The av-
erage number of nests per kilometer from 1998 to 2005 was used as
the response variable. All variables that could potentially be related
to nesting activity were originally considered for inclusion in the
modeling attempts as the predictor variables. Slope has already
been shown to correlate with nesting density (Provancha & Ehrhart,
1987), and elevation with nest location preferences (Horrocks &
Scott, 1991). Offshore shoals may also be related to nest density
(Provancha & Ehrhart, 1987), and beach orientation, aspect, and
length and width measurements provide additional information
that may affect beach morphology. While BPI/TPI and rugosity have
not been previously used for sea turtle habitat modeling, they have
been incorporated into other marine habitat models, such as
Iampietro et al. (2008). The minimum, maximum, mean, and stan-
dard deviation of slope and elevation, both for onshore and offshore
Table 4
Beaches and their assigned rank for each species with onshore variables. Minimum and ma

Beach C.
caretta
use

C.
mydas
use

D.
coriacea
use

Onshore variables

Onshore
elevation

Onshore
slope

Boca Raton Beaches Med Med Med −1.29–6.34 0.04– 34.00
Deerfield/Hillsboro Beaches Med Med Med −1.70–6.38 0.02–24.55
Delray Beach Low Low Med −1.47–5.54 0.01–14.70
Ft Lauderdale Beach Low Low Low −1.58–6.35 0.14–25.32
Golden Beach Low Low Low −0.66–6.39 0.01–28.77
Gulfstream Low Med Med −2.06–5.20 0.00–22.41
Gulfstream Park Med Low None −1.04–3.17 1.95–32.38
Highland Beach Med Med Med −1.45–5.77 0.00–52.24
Hobe Sound NWR High Med High −1.94–5.95 0.02–32.54
Hollywood/Hallandale Beach Low Low Low −0.75–7.12 0.01–15.71
John U. Lloyd Beach State Park Low Low Low −0.76–4.92 0.02–16.80
Jupiter Island High Med High −2.54–9.63 0.00–39.25
Kreusler Park Low Low High −1.47–2.00 1.43–11.77
Lake Worth Municipal Beach Low None Low −1.05–10.20 1.87–45.12
Lantana Low Low Med −0.10–3.80 0.95–26.64
Macarthur State Park High High High −2.16–3.56 0.06–22.34
Ocean Inlet Park Low Low Low −1.69–3.84 0.71–15.92
Ocean Reef Park Med Low High −0.57–5.22 0.07–30.98
Pompano/Lauderdale-by-the-Sea Med Low Low −1.76–6.37 0.00–26.40
Singer Island High High High −4.24–12.50 0.00–33.07
Sloan's Curve High High High −1.58–3.65 0.02–28.23
areas, were included, as were offshore shoal and onshore aspect,
width, and length measurements.

For rugosity and BPI/TPI, maximum, mean, and standard deviation
of values were included; however, offshore mean BPI and offshore
and onshore minimum rugosity had values too similar across all
beaches to be included in the model. In addition, minimum BPI/TPI
measurements were removed from consideration as sea turtles com-
ing ashore to nest may be less affected by the lowest areas than the
surroundings, and more affected by the highest peaks and overall
landscape surface characteristics. Stepwise multiple regressions
were run to determine the best model for each species, with a balance
sought between low root-mean-square error (RMSE) and Akaike in-
formation criterion (AIC) values, and high adjusted R2 with a mini-
mum number of variables.

3. Results

3.1. Beach-wide comparisons within and between species

3.1.1. Within species
The Jenks divisions divided the beaches into rankings for average

number of nests per km per species (Table 3), and the assigned
rank for each beach, and the ranges observed for each variable, are
shown in Tables 4 and 5.

Offshore and onshore elevation, slope, TPI/BPI, and rugosity
were compared across ranks for each species. Some of the variables
demonstrated a clear gradient for each species, with low rank
beaches having the greatest variability and the highest ranking
beaches having less, such as BPI offshore (Fig. 4). (For C. caretta, off-
shore and onshore BPI/TPI and offshore rugosity showed such gra-
dients; for C. mydas, offshore and onshore rugosity and offshore
BPI did; none of the variables tested for D. coriacea demonstrated
such a pattern). The remaining variables showed no distinct trends,
such as onshore elevation (Fig. 5).

3.1.2. Between species
Based on the ANOVA tests, none of the variables were statistically

different between species at the pb0.10 significance level. This indi-
cates that the beaches with the highest use for the three species
ximum values are reported for elevation, slope, TPI, rugosity, and beach width.

Onshore
TPI

Onshore
rugosity

Onshore
aspect

Beach
length
(km)

Beach
width
(m)

Sine beach
orientation

Sine
beach
aspect

−2.16–2.25 1.00–1.11 102.14 7.60 26.19–83.29 0.16 0.98
−0.53–0.74 1.00–1.02 98.41 6.90 15.64–80.46 0.13 0.99
−0.79–1.07 1.00–1.04 111.97 4.80 48.05–99.29 0.17 0.93
−3.90–3.09 1.00–1.14 111.67 10.50 26.76–142.40 0.14 0.93
−1.36–2.68 1.00–1.20 160.96 1.97 44.54–71.62 0.07 0.33
−1.17–3.5 1.00–1.19 101.47 2.71 15.83–56.60 0.12 0.98
−1.12–0.23 1.00–1.01 97.93 0.13 33.47–38.00 0.15 0.99
−6.42–2.38 1.00–1.08 98.12 4.62 20.34–74.68 0.08 0.99
−1.13–1.91 1.00–1.05 72.51 5.30 28.51–55.99 −0.35 0.95
−3.91–3.97 1.00–1.38 114.74 9.30 30.68–86.94 0.11 0.91
−1.47–2.40 1.00–1.06 147.58 3.70 40.45–111.6 0.13 0.54
−1.74–5.99 1.00–1.32 92.88 13.61 24.12–97.82 −0.32 1.00
−0.61–0.18 1.00–1.02 87.73 0.50 17.50–36.81 −0.03 1.00
−2.79–7.08 1.00–1.43 94.77 0.40 42.80–46.23 −0.01 1.00
−1.38–1.46 1.00–1.07 91.79 0.20 31.70–41.73 0.08 1.00
−1.53–1.09 1.00–1.06 84.51 2.54 22.68–41.92 −0.20 1.00
−0.72–1.30 1.00–1.02 135.55 0.19 54.38–62.09 0.25 0.70
−0.73–1.99 1.00–1.04 105.62 0.20 31.91–77.52 0.35 0.96
−4.51–3.50 1.00–1.14 117.91 7.60 53.40–136.30 0.19 0.88
−0.92–0.73 1.00–1.25 115.25 3.20 17.87–121.50 −0.06 0.90
−2.05–0.67 1.00–1.04 108.73 1.33 33.57–53.23 0.01 0.95



Table 5
Beaches and their assigned rank for each species with offshore variables. Minimum and maximum values are reported for elevation, slope, BPI, and rugosity.

Beach C. caretta
use

C. mydas
use

D. coriacea
use

Offshore variables

Offshore
Elevation

Offshore
Slope

Offshore
BPI

Offshore
Rugosity

Sine Offshore
Aspect

Shoals Area
(km2)

Boca Raton Beaches Med Med Med −22.18 to −0.11 0.00–16.10 −1.27–1.04 1.00–1.05 0.90 0.47
Deerfield/Hillsboro Beaches Med Med Med −23.75 to −0.66 0.00–33.37 −1.30–0.97 1.00–1.06 0.79 0
Delray Beach Low Low Med −26.63 to −0.24 0.00–18.10 −1.94–1.53 1.00–1.09 0.85 0.82
Ft Lauderdale Beach Low Low Low −12.16–0.05 0.00–16.73 −1.41–2.18 1.00–1.11 0.30 0
Golden Beach Low Low Low −10.95–0.17 0.00–7.70 −1.60–2.09 1.00–1.13 0.36 0
Gulfstream Low Med Med −18.05 to −0.10 0.00–6.38 −0.75–0.60 1.00–1.01 0.90 0
Gulfstream Park Med Low None −15.69 to −0.71 0.00–7.31 −0.77–0.56 1.00–1.01 0.87 0
Highland Beach Med Med Med −21.92–0.12 0.00–5.92 −1.09–0.81 1.00–1.03 0.94 0
Hobe Sound NWR High Med High −14.2 to −0.33 0.00–16.40 −1.74–1.94 1.00–1.08 0.66 0.80
Hollywood/Hallandale Beach Low Low Low −12.85–0.17 0.00–13.40 −4.04–6.84 1.00–1.90 0.48 0
John U. Lloyd Beach State Park Low Low Low −10.21 to −0.32 0.00–11.70 −3.57–3.03 1.00–1.44 0.47 0
Jupiter Island High Med High −12.26–1.80 0.00–12.10 −2.24–1.74 1.00–1.18 0.90 0
Kreusler Park Low Low High −14.53 to −0.88 0.00–5.40 −0.48–0.40 1.00–1.01 0.98 0
Lake Worth Municipal Beach Low None Low −17.72 to −1.30 0.00–8.62 −1.19–0.69 1.00–1.03 0.98 0
Lantana Low Low Med −13.95 to −0.97 0.01–4.61 −0.48–0.44 1.00–1.01 0.93 0
Macarthur State Park High High High −13.45 to −0.16 0.00–11.3 −1.29–1.18 1.00–1.05 0.94 0
Ocean Inlet Park Low Low Low −16.29 to −0.40 0.02–7.61 −0.92–0.53 1.00–1.01 0.96 0
Ocean Reef Park Med Low High −18.89–0.27 0.00–11.70 −1.07–1.34 1.00–1.07 0.80 0
Pompano/Lauderdale-by-the-Sea Med Low Low −18.64–0.12 0.00–26.80 −2.16–3.12 1.00–1.23 0.53 0.28
Singer Island High High High −20.94 to −0.98 0.00–14.10 −0.91–1.02 1.00–1.11 0.95 0
Sloan's Curve High High High −14.43 to −0.76 0.00–9.52 −0.84–0.75 1.00–1.03 0.97 0
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contained similar means for each of the variables tested. This result is
not surprising, as there is overlap between many of the highest rank-
ing beaches.

The range of values present on nesting beaches for each species
was compared for elevation, slope, TPI/BPI, rugosity, length, width,
orientation, and aspect to establish minimum and maximum suit-
ability values. Because most of the nesting beaches were used by
all three species, the ranges are similar, with a few exceptions
(Table 6).
Fig. 4. BPI offshore measurements (minimum, maximum, and

Fig. 5. Elevation onshore measurements (minimum, maximum,
Two beaches recorded no use by a turtle species for the time
period included in this study: Lake Worth Municipal Beach had
no recorded nesting C. mydas, and Gulfstream Park had no
recorded nesting D. coriacea. The variables for these two beaches
were compared to the extremes of the beaches currently used by
the species. Lake Worth Municipal Beach contained onshore TPI
and rugosity values beyond the maximum values of nesting
beaches, while offshore values were within the ranges of nesting
beaches (Table 7).
mean BPI offshore) for Caretta caretta and Chelonia mydas.

and mean elevation onshore) for each of the three species.



Table 6
Onshore and offshore minimums and maximums observed for each variable across species. Note all species use the same ranges, with exceptions noted with a.

Onshore

Elevation (m) Slope TPI Rugosity Length (km) Width (km) Sine orientation Sine aspect

−4.24–12.50 0–52.24 −6.42–7.08a 1.00–1.43a 0.13–13.61a 0.02–0.14 −0.35–0.35 0.33–1.00

Offshore

Elevation (m) Slope BPI Rugosity Sine aspect

−26.63–1.80 0–33.37 −4.04–6.84 1.00–1.90 0.36–0.98

a The range for Chelonia mydas for TPI is −6.42–5.99, and for rugosity it is 1.00–1.38. The range for Dermochelys coriacea for beach length is 0.20–13.61 km.

Table 7
Onshore and offshore minimums and maximums compared between nesting beaches of Chelonia mydas and Lake Worth Municipal Beach. Variables outside the extremes of nesting
beaches are shown in bold.

Onshore

Elevation (m) Slope TPI Rugosity Length (km) Width (km) Sine orientation Sine aspect

Lake Worth −1.05–10.15 1.87–45.12 −2.79–7.08 1.00–1.43 0.40 0.04–0.05 −0.01 0.997

Offshore

Elevation (m) Slope BPI Rugosity Sine aspect

Lake Worth −17.72 to −1.34 0–8.62 −1.19–0.69 1.00–1.03 0.98

Table 8
Onshore and offshore minimums and maximums compared between nesting beaches of Dermochelys coriacea and Gulfstream Park. Variables outside the extremes of nesting
beaches are shown in bold.

Onshore

Elevation (m) Slope TPI Rugosity Length (km) Width (km) Sine orientation Sine aspect

Gulfstream Park −1.04–3.17 1.95–32.38 −1.12–0.23 1.00–1.01 0.13 0.03–0.04 0.15 0.99
Offshore

Elevation (m) Slope BPI Rugosity Sine aspect

Gulfstream Park −15.69 to −0.71 0–7.31 −0.77–0.56 1.00–1.01 0.87
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The length of Gulfstream Park is below the extremes observed in
nesting beaches for D. coriacea for period of the nesting years studied,
while offshore values were within the ranges of nesting beaches
(Table 8). Although the maximum offshore BPI for Gulfstream Park
is on the lower end of the observed values, it is still within the range.

3.2. Developing predictive models for nesting density per species

Variables that were highly correlated (Pearson correlation coeffi-
cient>0.8) were removed before model creation: onshore standard
deviation of elevation which correlated with onshore maximum
Table 9
Multivariate stepwise linear regression results. All beta weights are significant at pb0.05,
pb0.1. SE = standard error; VIF = variance inflation factor.

Response Model adjusted R2 Variable Parameter est

Caretta caretta 0.63 Intercept 57.83
SineOrient −48.90
OnMinEle −326.02

Chelonia mydas 0.49 Intercept 8.95
TPIOnMax −2.65
OnMinEle −6.81
OffMaxEle −37.00

Dermochelys coriacea 0.47 Intercept 4.22
SineOrient −9.89
TPIOnMax −0.52
elevation; offshore minimum elevation which correlated with off-
shore average elevation; offshore standard deviation of elevation
which correlated with offshore average elevation; offshore maximum
rugosity with offshore maximum BPI; and onshore maximum rugosi-
ty with onshore maximum TPI. Because the pairs were so highly cor-
related and also so interrelated, an argument could be made for
retention of either variable. For this study, the maximum and average
elevations were chosen to be retained over minimum and standard
deviation, and maximum BPI/TPI measures were chosen instead of
maximum rugosity values. The residuals for all models were random-
ly scattered above and below the y=0 line.
except for maximum onshore TPI in the Caretta caretta model, which is significant at

imate SE Cumulative R2 values Beta weights VIF

36.46
20.05 0.51 −0.39 1.28
99.50 0.63 −0.53 1.28
7.20
1.39 0.07 −0.32 1.07
3.22 0.43 −0.39 1.33

16.22 0.56 −0.43 1.37
0.69
2.38 0.38 −0.69 1.03
0.23 0.52 −0.37 1.03
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For C. caretta, transformed orientation (SineOrient) and minimum
onshore elevation (OnMinEle) were able to model nesting density
(adjusted R2=0.63) (Table 9). The beta weights (standardized multi-
ple regression coefficients) were similar, with the onshore minimum
elevation as the most influential predictor variable as identified by
the beta weight.

For C. mydas, nesting density was modeled with onshore mini-
mum elevation (OnMinEle), onshore maximum TPI (TPIOnMax),
and offshore maximum elevation (OffMaxEle) (adjusted R2=0.49)
(Table 9). Offshore maximum elevation was the most relatively im-
portant predictor variable, with offshore maximum TPI as the least.

For D. coriacea, transformed orientation (SineOrient) and maxi-
mum onshore TPI (TPIOnMax) were able to model nesting density
(adjusted R2=0.47) (Table 9). The beta weights showed orientation
influencing the model more than the maximum onshore TPI.

4. Discussion

The relationships between geomorphological information and sea
turtle nesting beaches have been largely restricted to a handful of
beaches at a time, due to time and financial constraints. Multiple spe-
cies and beach comparisons have been limited and infrequent. The
ability to comparemore than twenty beaches across three species pro-
vides new insights to sea turtle nesting beaches for elevation-derived
characteristics, especially in regard to identifying preferred ranges for
different morphological features and modeling nesting densities.

Sea turtles can use beaches with a wide range of acceptable values,
and these ranges overlap for the different species. However, it ap-
pears that species have limits to their accepted variable ranges, and
beaches that fall outside of these limits are not used for nesting activ-
ities. The ranges of values observed on nesting beaches for the differ-
ent species should be compared to other nesting areas to determine if
such values can be applied elsewhere. These ranges may also help de-
termine how beach-altering activities, such as sand mining or hurri-
canes, will affect nesting densities in subsequent years.

Sea turtle nesting activity can be successfully modeled with a
small number of topographical variables, despite overall beach simi-
larities. Therefore, as Provancha and Ehrhart (1987) and Mortimer
(1982) suggested, beach characteristics, as opposed to sand charac-
teristics, may be important factors in determining why sea turtles
nest on some beaches more often than on others.

In addition, although bathymetric details have been suggested as
possibly influencing nesting activity (Mortimer, 1982; Provancha &
Ehrhart, 1987) the results from this study indicate that onshore char-
acteristics are more influential for predicting nest density, given the
variables tested. Measures of TPI, in particular, were present in all
three models, demonstrating that the difference in slope of an area
from the neighboring regions influences nesting activity for the
three species.

Because Florida contains one of the largest C. caretta rookeries in
the world and one of the largest nesting areas in the Atlantic for
C. mydas (Meylan et al., 1995), the ability to successfully model nesting
density may also be repeatable with other rookeries elsewhere in
these species' ranges. Although the beaches in Florida provide the
only continuously used nesting area in the continental United States
for D. coriacea (Meylan et al., 1995), it is unclear if using other more
important nesting areas may provide different models, as these areas
can support larger numbers of nesting females and may therefore
show potentially different results.

The beaches included in this study have relatively narrow eleva-
tion ranges, and the inability to capture fine morphological details
due to the limitations of spatial resolution may result in the loss of
potentially important information. Because of the overall similarities
between the beaches, ranges for variables often overlap between
beaches used by different species, and each species does not appear
to prefer one extreme of the range over another. However, beaches
whose ranges fall outside the established ranges are not used for
nesting (e.g. Gulfstream Park for D. coriacea), and the small differ-
ences present can be used to model beach use. Another potential
shortcoming is the timing of the LiDAR flight collection. Although
the data were collected at low tide, but not at absolute low tide,
some low-lying areas may not have been included in the designated
onshore areas.

Elevation and elevation-based morphological details are not the
only determining factors for beach use by sea turtles. Vegetation,
beach use by humans including construction and beach traffic, and
presence of predators are other possible influences to sea turtle
nesting activity. However, the results from this study illustrate that
beach physical characteristics can be used to predict beach use by
nesting female sea turtles.

The use of highly detailed topographical and bathymetrical data
enables researchers to quickly and efficiently compare multiple
study areas at once, as well as providing insights about geomorpho-
logical nuances that were not previously possible with traditional
field methods, particularly in comparison to transect-based studies.
LiDAR can be used to further refine known habitat requirements for
species. In addition, this work highlights the potential of LiDAR to
model and potentially predict habitat use for species for which coastal
morphology is an important characteristic. The methods and results
from this study can be applied to other species for which elevation
and morphological characteristics are a limiting factor to a species'
distribution. The increased spatial resolution of LiDAR, and potentially
high temporal frequency (i.e. dependent on aircraft and not satellite),
allow for new research focuses for wildlife, and for those species that
utilize areas susceptible to sea level rise, the need for more complete
knowledge of habitat suitability requirements is of increasing
importance.
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